

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGD4M65DF2

Trench gate field-stop IGBT, M series 650 V, 4 A low loss

Datasheet - production data

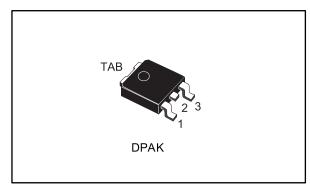
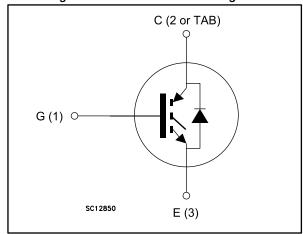



Figure 1: Internal schematic diagram

Features

- 6 µs of short-circuit withstand time
- V_{CE(sat)} = 1.6 V (typ.) @ I_C = 4 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive V_{CE(sat)} temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGD4M65DF2	GD4M65DF2 G4M65DF2		Tape and reel

Contents STGD4M65DF2

Contents

1	Electrical ratings					
2	Electric	eal characteristics	4			
	2.1	Electrical characteristics (curves)	6			
3	Test cir	cuits	11			
4	Packag	e information	12			
	4.1	DPAK (TO-252) type A2 package information	13			
	4.2	Packing information	16			
5	Revisio	n history	18			

STGD4M65DF2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	650	V
1-	Continuous collector current at T _C = 25 °C	8	Α
lc	Continuous collector current at T _C = 100 °C	4	Α
ICP ⁽¹⁾	Pulsed collector current	16	Α
V_{GE}	Gate-emitter voltage	±20	٧
1_	Continuous forward current at T _C = 25 °C	8	Α
l _F	Continuous forward current at T _C = 100 °C	4	Α
I _{FP} ⁽¹⁾	Pulsed forward current	16	Α
Ртот	Total dissipation at T _C = 25 °C	68	W
T _{STG}	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	2.2	°C/W
RthJC	Thermal resistance junction-case diode	5	°C/W
RthJA	Thermal resistance junction-ambient	100	°C/W

 $^{^{(1)}}$ Pulse widht limited by maximum junction temperature.

Electrical characteristics STGD4M65DF2

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_C = 250 \mu\text{A}$	650			>
		$V_{GE} = 15 \text{ V}, I_{C} = 4 \text{ A}$		1.6	2.1	
V _{CE(sat)}	V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 4 A, T _J = 125 °C		1.9		V
		V _{GE} = 15 V, I _C = 4 A, T _J = 175 °C		2.1		
		I _F = 4 A		1.9		
V_{F}	Forward on-voltage	I _F = 4 A, T _J = 125 °C		1.7		V
		I _F = 4 A, T _J = 175 °C		1.6		
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	5	6	7	٧
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μΑ
Iges	Gate-emitter leakage current	Vce = 0 V, VgE = ± 20 V			±250	μΑ

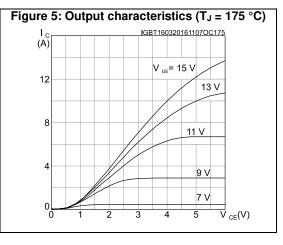
Table 5: Dynamic characteristics

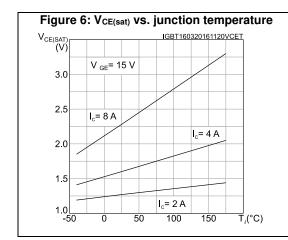
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		1	369	ı	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz,	1	24.8	1	рF
Cres	Reverse transfer capacitance	$V_{GE} = 0 V$	-	8	-	ρ.
Q_g	Total gate charge	$V_{CC} = 520 \text{ V}, I_C = 4 \text{ A},$	1	15.2	1	
Q_{ge}	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 30: " Gate charge</i>	-	3	-	nC
Q _{gc}	Gate-collector charge	test circuit")	-	7	-	

Table 6: IGBT switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			12	-	ns
tr	Current rise time			6.9	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 4 A,		480	-	A/μs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_G = 47 \Omega$ (see <i>Figure 29: " Test</i>		86	-	ns
t _f	Current fall time	circuit for inductive load		120	-	ns
E _{on} (1)	Turn-on switching energy	switching")		0.040	-	mJ
E _{off} (2)	Turn-off switching energy			0.136	-	mJ
Ets	Total switching energy			0.176	-	mJ
t _{d(on)}	Turn-on delay time			11.6	-	ns
tr	Current rise time			8	-	ns
(di/dt) _{on}	Turn-on current slope	$V_{CE} = 400 \text{ V}, I_{C} = 4 \text{ A},$ $V_{GE} = 15 \text{ V}, R_{G} = 47 \Omega,$ $T_{J} = 175 ^{\circ}\text{C}$		410	-	A/μs
t _{d(off)}	Turn-off-delay time			85	-	ns
t _f	Current fall time	(see Figure 29: " Test circuit		211	-	ns
E _{on} (1)	Turn-on switching energy	for inductive load switching")		0.067	-	mJ
E _{off} (2)	Turn-off switching energy			0.210	-	mJ
E _{ts}	Total switching energy			0.277	-	mJ
	Short aircuit withstand time	V _{CC} ≤ 400 V, V _{GE} = 15 V, T _{Jstart} = 150 °C	6		-	μs
t _{sc} Short-circuit withstand time		V _{CC} ≤ 400 V, V _{GE} = 13 V, T _{Jstart} = 150 °C	10		-	μs

Notes:


Table 7: Diode switching characteristics (inductive load)


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		1	133	1	ns
Qrr	Reverse recovery charge	$I_F = 4 \text{ A}, V_R = 400 \text{ V},$	1	140	ı	nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V, di/dt = 800 A/μs	1	5	1	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	for inductive load ewitching"		520	ı	A/μs
Err	Reverse recovery energy		1	15	1	μJ
t _{rr}	Reverse recovery time		-	236	1	ns
Qrr	Reverse recovery charge	I _F = 4 A, V _R = 400 V, V _{GE} = 15 V, T _J = 175 °C, di/dt = 800 A/μs	1	370	1	nC
I _{rrm}	Reverse recovery current		1	6.6	1	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during tb	(see Figure 29: " Test circuit for inductive load switching")	1	378	1	A/μs
Err	Reverse recovery energy		-	32	-	μJ

⁽¹⁾Including the reverse recovery of the diode.

 $[\]ensuremath{^{(2)}}\mbox{Including}$ the tail of the collector current.

2.1 Electrical characteristics (curves)

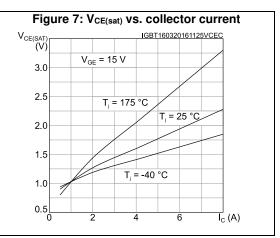
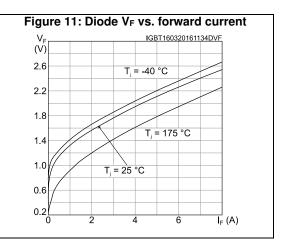
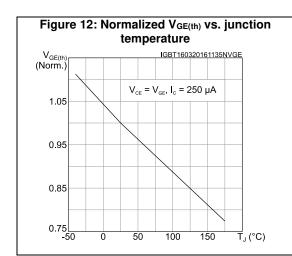
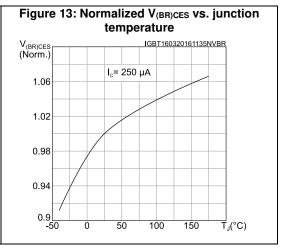
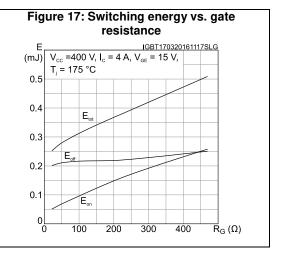
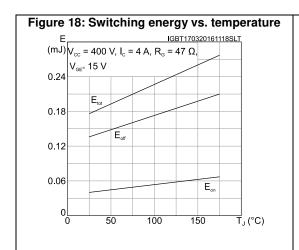




Figure 9: Forward bias safe operating area $\begin{array}{c|c} I_C & \text{IGBT160320161133FSOA} \\ (A) & \text{single pulse, } T_c = 25^{\circ}C, \\ T_J \leq 175^{\circ}C, V_{GE} = 15 \text{ V} \\ \end{array}$ $\begin{array}{c|c} I_{CBT160320161133FSOA} \\ T_J \leq 175^{\circ}C, V_{GE} = 15 \text{ V} \\ \end{array}$ $\begin{array}{c|c} I_{CBT160320161133FSOA} \\ I_$

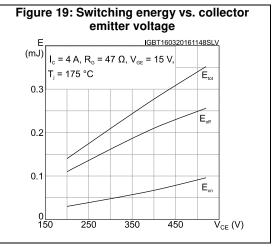
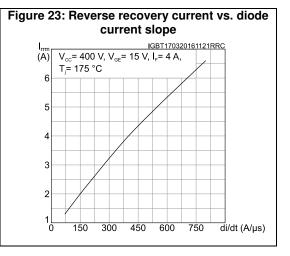

Figure 14: Capacitance variations $\begin{array}{c} C \\ (pF) \\ \hline \\ 10^2 \\ \hline \\ 10^1 \\ \hline \\ 10^{-1} \\ \hline \\ 10^0 \\ \hline \\ 10^1 \\ \hline \\ 10^2 \\ \hline \\ V_{CE}(V) \\ \hline \end{array}$

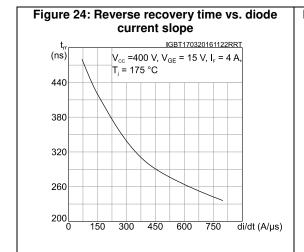
Figure 15: Gate charge vs. gate-emitter voltage

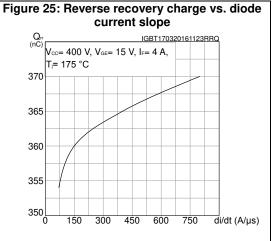
V_{GE} | IGBT160320161140GCGE |
(V) | V_{CC} = 520 V, I_C = 4 A, I_G = 1 mA |
15 | 12 | 9 |
6 | 3 |
0 | 3 | 6 | 9 | 12 | 15 | Q_g (nC)

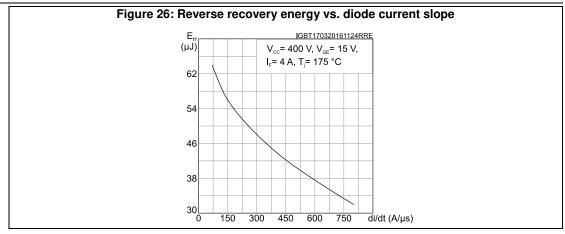
STGD4M65DF2 Electrical characteristics

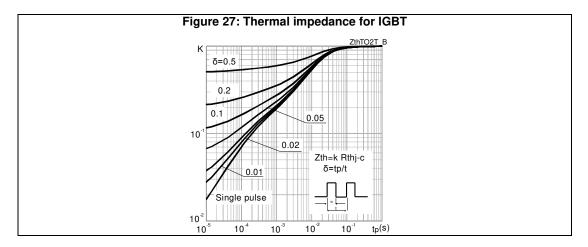
V _{GE}(V)

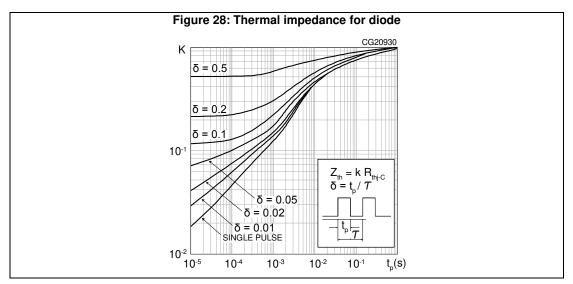

Figure 20: Short-circuit time and current vs. V_{GE} $t_{(\mu s)} V_{\text{CC}} \leq 400 \text{ V}, \text{ T} \leq 150 \text{ °C}$ 17 $t_{sc} I_{\text{GBT}} 170320161118SCV I_{\text{A}} I_{\text{B}} I_{\text{A}} I_{\text{B}} I_{$

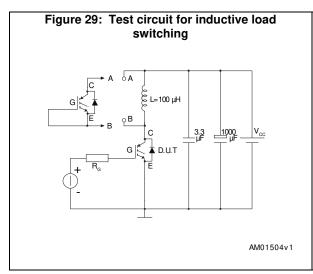

12 13

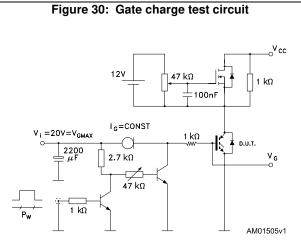

Figure 21: Switching times vs. collector current

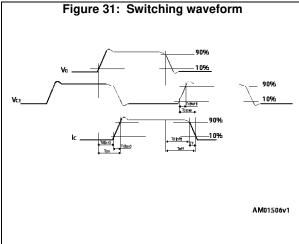

(ns) $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, R_G = 47 \Omega,$ $V_{CC} = 400 \text{ V}, V_{CC} = 400 \text{ V}, V$

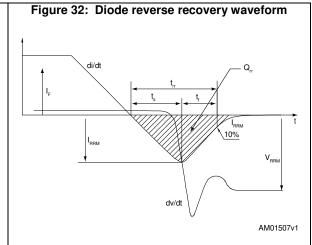

Figure 22: Switching times vs. gate resistance $(ns) \begin{bmatrix} t \\ V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, I_{C} = 4 \text{ A}, \\ T_{J} = 175 \text{ °C} \end{bmatrix}$










STGD4M65DF2 Test circuits

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STGD4M65DF2 Package information

4.1 DPAK (TO-252) type A2 package information

Figure 33: DPAK (TO-252) type A2 package outline

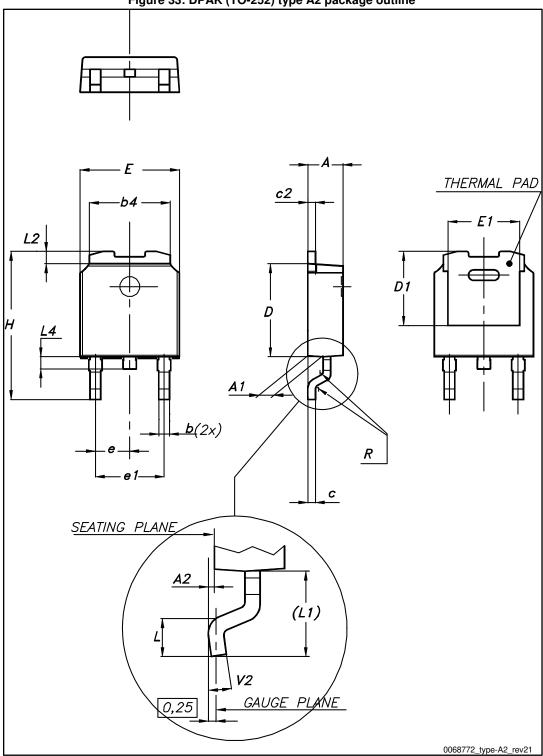


Table 8: DPAK (TO-252) type A2 mechanical data

Di	mm				
Dim.	Min.	Тур.	Max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1	4.95	5.10	5.25		
E	6.40		6.60		
E1	5.10	5.20	5.30		
е	2.16	2.28	2.40		
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
L1	2.60	2.80	3.00		
L2	0.65	0.80	0.95		
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

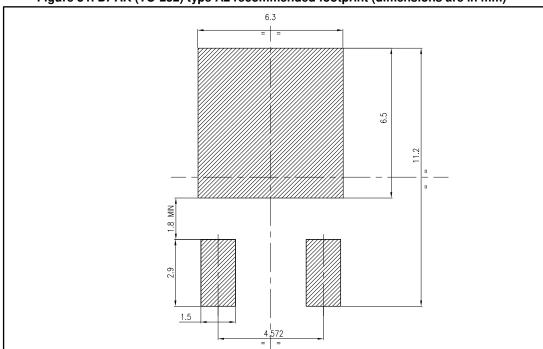
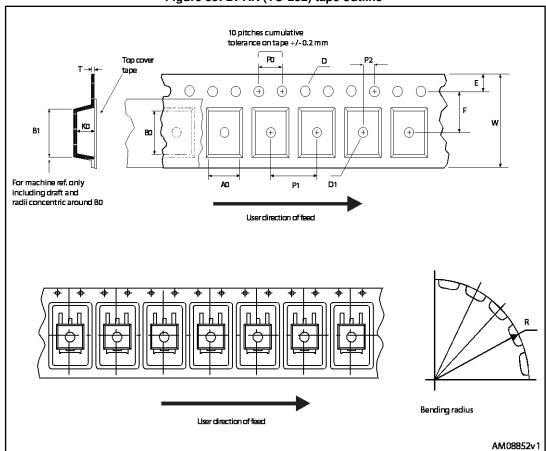



Figure 34: DPAK (TO-252) type A2 recommended footprint (dimensions are in mm)

FP_0068772_21

4.2 Packing information

Figure 35: DPAK (TO-252) tape outline

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 36: DPAK (TO-252) reel outline

Table 9: DPAK (TO-252) tape and reel mechanical data

Таре				Reel	
Dim	m	ım	Dim	r	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Bas	e qty.	2500
P1	7.9	8.1	Bul	k qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Revision history STGD4M65DF2

5 Revision history

Table 10: Document revision history

Date	Revision	Changes	
25-Nov-2015	1	First release.	
18-Apr-2016	2	Modified: features in cover page Modified: Table 2: "Absolute maximum ratings", Table 4: "Static characteristics", Table 5: "Dynamic characteristics", Table 6: "IGBT switching characteristics (inductive load)" and Table 7: "Diode switcharacteristics (inductive load)" Added: Section 2.1: "Electrical characteristics (curves)" Minor text changes	
28-Apr-2016	3	Modified: Table 1: "Device summary" in cover page Minor text changes	
21-Nov-2016	4	Updated Table 2: "Absolute maximum ratings" Updated Figure 25: "Reverse recovery charge vs. diode current slope" Updated Figure 32: " Diode reverse recovery waveform"	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

