

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

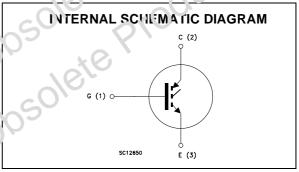
STGD7NB120S-1

N-CHANNEL 7A - 1200V - IPAK PowerMESH™ IGBT

PRELIMINARY DATA

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGD7NB120S-1	1200 V	< 2.1 V	7 A

- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- VERY LOW ON-VOLTAGE DROP (Vcesat)
- OFF LOSSES INCLUDE TAIL CURRENT
- HIGH CURRENT CAPABILITY



Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The suffix "S" identifies a family optimized achieve minimum on-voltage drop for lov/frequency applications (<1kHz).

APPLICATIONS

- MOTOR CONTROL
- LIGHT DIMMER
- INTRUSH CURRENT LINITATION

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	1200	V
¥ _E CR	Reverse Battery Protection	20	V
∀GE	Gate-Emitter Voltage	±20	V
Ic	Collector Current (continuos) at T _C = 25°C	10	Α
I _C	Collector Current (continuos) at T _C = 100°C	7	Α
I _{CM} (■)	Collector Current (pulsed)	20	Α
P _{TOT}	Total Dissipation at T _C = 25°C	55	W
	Derating Factor	0.4	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) Pulse width limited by safe operating area

Aug 2000 1/6

STGD7NB120S-1

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	2.27	°C/W	ì
Rthj-amb	Thermal Resistance Junction-ambient Max	100	°C/W	ì
Rthc-h	Thermal Resistance Case-heatsink Typ	0.5	°C/W	ì

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collectro-Emitter Breakdown Voltage	$I_C = 250 \ \mu A, \ V_{GE} = 0$	1200			V
V _{BR(ECR)}	Emitter-Collectro Breakdown Voltage	I _C = 10mA, V _{GE} = 0	20			V
loso	Collector cut-off	V _{CE} = Max Rating, T _C = 25 °C			50	JΑ
I _{CES}	$(V_{GE} = 0)$	V _{CE} = Max Rating, T _C = 125 °C			2:0	μA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ±20V , V _{CE} = 0		9/	±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}, I_{C} = 250 \mu$ A.	3	VQ.	5	V
V_{GE}	Gate Emitter Voltage	V _{CE} =2.5V, I _C = 2/\(\text{Tj} = 25\div 1.25\)\(\text{C}\)	6,		6.5	V
		V _{GE} = 15 ' I _C = 3.5 A	3		1.6	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	VOE = 15V, IC = 7 A			2.1	V
	Vollago	·ν _{ι)E} = 15V, I _C = 10 A		1.7		

DYNAMIC

Symbol	Param eter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forwar 1 fransconductance	$V_{CE} = 25 \text{ V}, I_{C} = 7 \text{ A}$	2.5	4.5		S
C _{ies}	Input Capacitance			430		pF
C _{oes}	Output Capacitance	V _{CF} = 25V, f = 1 MHz, V _{GF} = 0		40		pF
r _{es}	Reverse Transfer Capacitance	102 201,1 111112, 102		7		pF
Qg	Gate Charge	V _{CE} = 960V, I _C = 7 A, V _{GE} = 15V		29		nC
lcL	Latching Current	$V_{clamp} = 960V$, $Tj = 150$ °C $R_G = 1K\Omega$	10			А

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{CC} = 960 V, I _C = 7 A		570		ns
t _r	Rise Time	$R_G = 1K\Omega$, $V_{GE} = 15 V$		270		ns
(di/dt) _{on}	Turn-on Current Slope	V_{CC} = 960 V, I_{C} = 7 A, R_{G} =1K Ω V _{GE} = 15 V, Tj = 125°C		800		A/µs
Eon	Turn-on Switching Losses			3.2		μJ

2/6

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING OFF

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Un
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _c	Cross-over Time			4.9		μs
	$t_r(V_{Off})$	Off Voltage Rise Time			2.9		μs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _f F	Fall Time	$R_{GE} = 1K\Omega$, $V_{GE} = 15 V$		3.3		με
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{off} (**)	Turn-off Switching Loss			15		m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _c (Cross-over Time	V 060 V In 7 A		7.5		μ
t _f Fall Time Tj = 125 °C 6.2 E _{off} (**) Turn-off Switching Loss 22 Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %. 2. Pulse width limited by max. junction temperature. (**)Losses include Also the Tail (Jedec Standardization)	$t_r(V_{Off})$	Off Voltage Rise Time			5.5		μ
Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. 2. Pulse width limited by max. junction temperature. (**)Losses include Also the Tail (Jedec Standardization)	t _f F	Fall Time	Tj = 125 °C		6.2	1.0	$\frac{1}{1}$
2. Pulse width limited by max. junction temperature. (**)Losses include Also the Tail (Jedec Standardization)	E _{off} (**)	Turn-off Switching Loss			22	110	Pm
oso, blo					-0		

Fig. 1: Gate Charge test Circuit

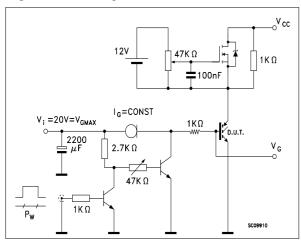
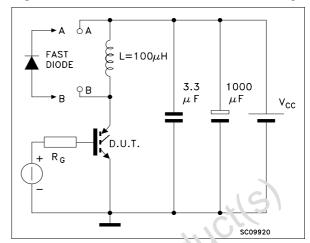
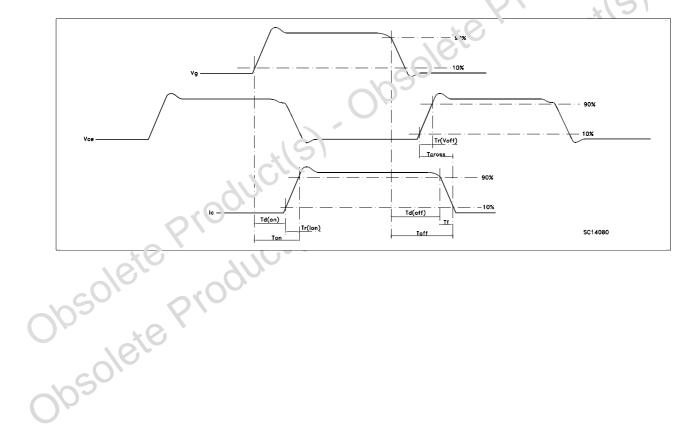
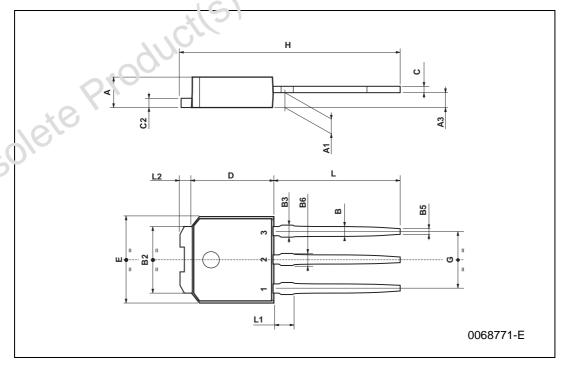




Fig. 2: Test Circuit For Inductive Load Switching



4/6

TO-251 (IPAK) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
А3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
В3			0.85			0.035
B5		0.3			0.012	10
B6			0.95			0.037
С	0.45		0.6	0.017	240	0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	C.z: 2		0.260
G	4.4		4.6	7.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.1	0.354		0.370
L1	0.8		12	0.031		0.047
L2		0.8	1	-	0.031	0.039

/7/°

Obsolete Products). Obsolete Products

of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

6/6