

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGP7NC60H

N-channel PowerMESH™ 600 V, 14 A very fast IGBT

Datasheet - obsolete product

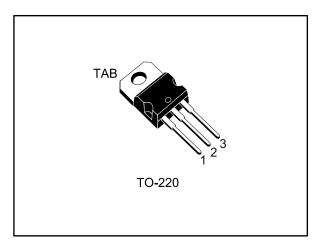
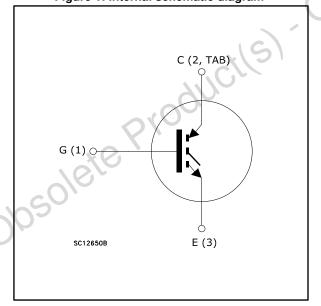



Figure 1: Internal schematic diagram

Features

Order code	V _{CES}	V _{CE(sat)} max @ 25°C	Ic @ 100°C	
STGP7NC60H	600 V	< 2.5 V	14 A	

- Low on-voltage drop (V_{CE(sat)})
- High frequency operation up to 70 kHz

Applications

- High frequency inverters
- SMPS and PFC in both hard switch and resonant topologies
- Motor drivers

Description

This device is a very fast IGBT developed using advanced PowerMESH™ technology. This process guarantees an excellent trade-off between switching performance and low on-state behavior. This device is well-suited for resonant or soft-switching applications.

Table 1: Device summary

Order code	Marking	Package	Packing
STGP7NC60H	GP7NC60H	TO-220	Tube

Contents STGP7NC60H

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package information	10
	4.1 TO-220 type A package information	11
5	Revision history	13
	Revision history	
Op	solete Proon	

STGP7NC60H Electrical ratings

1 **Electrical ratings**

Table 2: Absolute maximum ratings

Parameter	Value	Unit				
Collector-emitter voltage (V _{GE} = 0)	600	V				
Gate-emitter voltage	±20	V				
Continuous collector current at T _C = 25 °C ⁽¹⁾	25	Α				
Continuous collector current at T _C = 100 °C ⁽¹⁾	14	Α				
Collector current (pulsed)	50	Α				
Continuous forward current at T _C = 25 °C	80	W				
Storage temperature range Operating junction temperature range - 55 to 150						
				Notes: (1) Calculated according to the iterative formula: $I_C(T_C) = \frac{T_{JMAX} - T_C}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{J(max)} \times I_C(T_C))}$ (2) Pulse widht limited by maximum junction temperature.		
	Collector-emitter voltage ($V_{GE} = 0$) Gate-emitter voltage Continuous collector current at $T_C = 25$ °C (†) Continuous collector current at $T_C = 100$ °C (†) Collector current (pulsed) Continuous forward current at $T_C = 25$ °C Storage temperature range Operating junction temperature range according to the iterative formula: $T_{JMAX} - T_C$ $T_{J-C} \times V_{CESAT(MAX)}(T_{J(max)} \times I_C(T_C))$	Collector-emitter voltage (V _{GE} = 0) 600 Gate-emitter voltage ± 20 Continuous collector current at T _C = 25 °C (1) 25 Continuous collector current at T _C = 100 °C (1) 14 Collector current (pulsed) 50 Continuous forward current at T _C = 25 °C 80 Storage temperature range -55 to 150 Operating junction temperature range -55 to 150				

Notes:

$$I_C(T_C) = \frac{T_{JMAX} - T_C}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{J(max)} \times I_C(T_C))}$$

Table 3: Thermal data

	Symbol	Parameter	Value	Unit
	R _{thj-case}	Thermal resistance junction-case max	1.56	°C/W
	R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W
Obsoli	R _{thj-case} Thermal resistance junction-case max R _{thj-amb} Thermal resistance junction-ambient max			

 $^{^{(2)}}$ Pulse widht limited by maximum junction temperature.

Electrical characteristics STGP7NC60H

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)CES}$	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_C = 1 \text{ mA}$	600			٧
		$V_{GE} = 15 \text{ V}, I_{C} = 7 \text{ A}$		1.85	2.5	
VCE(cat)	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 7 A, T _J = 125 °C		1.7		V
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	3.75		5.75	V
		V _{GE} = 0 V, V _{CE} = 600 V			10	μΑ
Ices	Collector cut-off current	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V},$ $T_{C}=125 \text{ °C} \text{ (1)}$	1		1	mA
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ±20 V	0		±100	nA

Notes:

Table 5: Dynamic characteristics

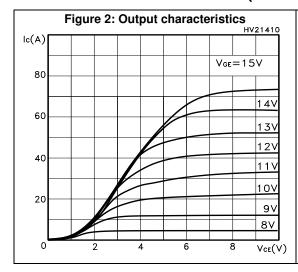
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
gfs ⁽¹⁾	Forward transconductance	V _{CE} = 15 V, I _C = 7 A		4.30		Ø
Cies	Input capacitance	,		720		pF
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V		81		рF
Cres	Reverse transfer capacitance			17		рF
Qg	Total gate charge	V _{CE} = 390 V, I _C = 7 A, V _{GE} = 15 V		35	48	
Qge	Gate-emitter charge	(see Figure 18: "Gate charge test		7		nC
Qgc	Gate-collector charge	circuit")		16		
Icl	Turn-off SOA minimum current	$\begin{aligned} V_{\text{clamp}} &= 480 \text{ V}, T_j = 150 ^{\circ}\text{C}, \\ R_G &= 10 \Omega, V_{GE} = 15 \text{V} \end{aligned}$	50			Α

Notes:

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

⁽¹⁾Pulsed: Pulse duration= 300 μs, duty cycle 1.5%

Table 6: IGBT switching characteristics (inductive load)


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	18.5		ns
$t_{r(on)}$	Turn-on rise time		1	8.5		ns
di/dt _(on)	Turn-on current slope	$V_{CC} = 390 \text{ V}, I_{C} = 7 \text{ A},$	-	1060		A/μs
tr(off)	Turn-off rise time	$V_{GE} = 15 \text{ V}, R_G = 10 \Omega$	-	27		ns
t _{d(off)}	Turn-off delay time	(see Figure 16: "Ic vs frequency" and Figure 17:	-	72		ns
tf	Fall time	"Test circuit for inductive load	-	60		ns
E _{on} ⁽¹⁾	Turn-on switching energy	switching")	-	95	125	μJ
E _{off} ⁽²⁾	Turn-off switching energy			115	150	μJ
Ets	Total switching energy			210	275	μJ
t _{d(on)}	Turn-on delay time		1	18.5	S	ns
$t_{r(on)}$	Turn-on rise time		-	7		ns
di/dt _(on)	Turn-on current slope		- 2	1000		A/μs
tr(off)	Turn-off rise time	$V_{CE} = 390 \text{ V}, I_{C} = 7 \text{ A}, \\ V_{GE} = 15 \text{ V}, R_{G} = 10 \Omega$	6	56		ns
$t_{d(off)}$	Turn-off delay time	T _J = 125 °C)'	116		ns
tf	Fall time	(see Figure 17: "Test circuit for inductive load switching")	-	105		ns
E _{on} (1)	Turn-on switching energy	Tor madelive load switching)	1	140		μJ
E _{off} (2)	Turn-off switching energy		ı	215		μJ
Ets	Total switching energy	202	-	355		μJ

Notes:

⁽¹⁾Including the reverse recovery of the diode.

⁽²⁾Including the tail of the collector current.

2.2 Electrical characteristics (curves)

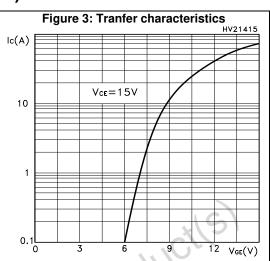


Figure 4: Trasconductance

HV21420

TJ=-50°C

VCE=15V

125°C

125°C

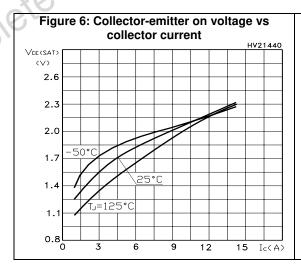
4

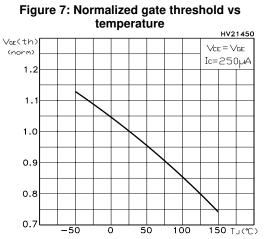
3

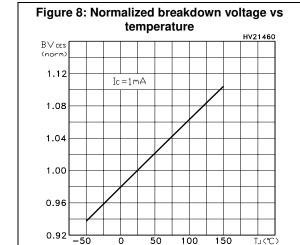
2

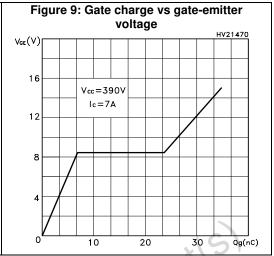
10

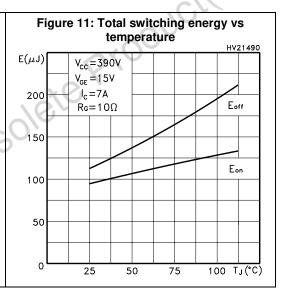
3

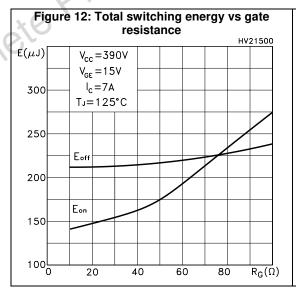

6

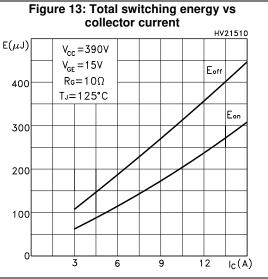

9

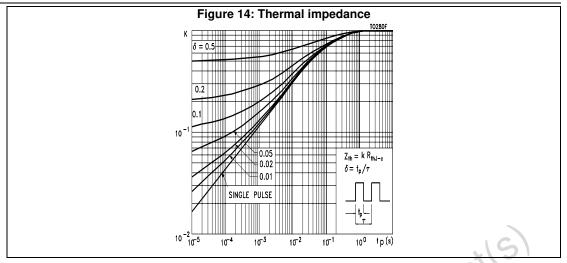

12

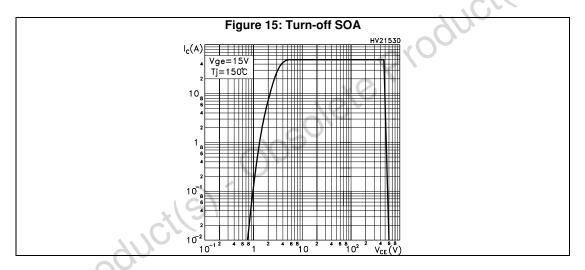

15

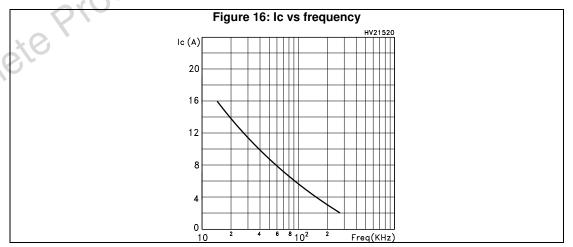

1c(A)

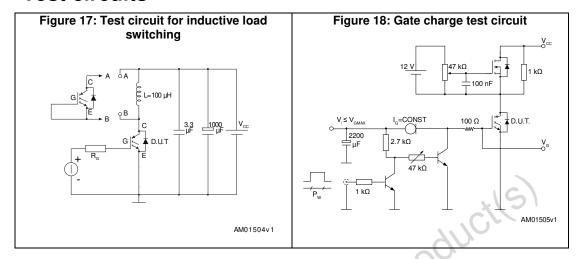














STGP7NC60H Test circuits

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STGP7NC60H Package information

4.1 TO-220 type A package information

Figure 20: TO-220 type A package outline

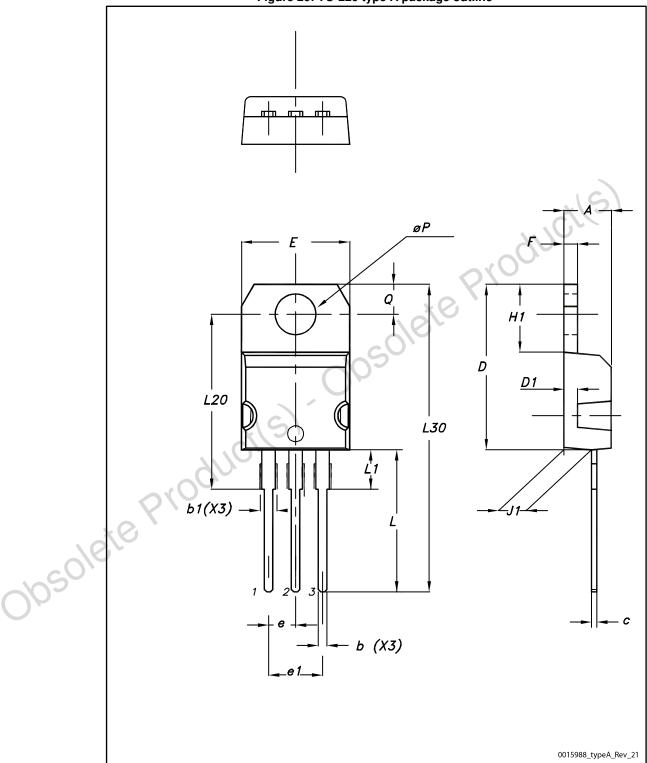


Table 7: TO-220 type A mechanical data

	mm			
Dim.	Min.	Тур.	Max.	
А	4.40		4.60	
b	0.61		0.88	
b1	1.14		1.55	
С	0.48		0.70	
D	15.25		15.75	
D1		1.27		
E	10.00		10.40	
е	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40	,(2.72	
L	13.00	011	14.00	
L1	3.50	40.	3.93	
L20		16.40		
L30		28.90		
øΡ	3.75	9	3.85	
Q	2.65		2.95	
o lete Prod	ucile			

STGP7NC60H Revision history

5 Revision history

Table 8: Document revision history

	Date	Revision	Changes
	20-Aug-2004	1	New datasheet.
	09-Jun-2005	2	Modified title
	04-Jul-2016	3	The part number STGD7NC60HT4 has been moved to a separate datasheet. Modified: title, features and description. Modified: Table 2: "Absolute maximum ratings", Table 3: "Thermal data", Table 4: "Static characteristics", Table 5: "Dynamic characteristics" and Table 6: "IGBT switching characteristics (inductive load)" Updated: Section 5.1: "TO-220 type A package information". Minor text changes.
005019	ate Pro	duci	(S) Obsolete Proc.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Josolete Product(s)

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

