

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

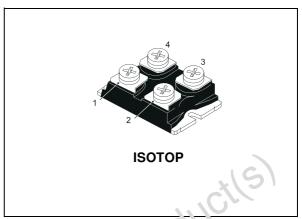
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

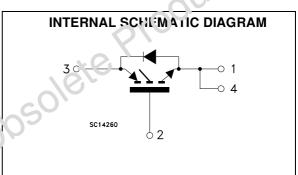


STGE50NB60HD

N-CHANNEL 50A - 600V - ISOTOP PowerMESH™ IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGY50NB60HD	600 V	< 2.8 V	50 A

- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP (V_{cesat})
- OFF LOSSES INCLUDE TAIL CURRENT
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- VERY HIGH FREQUENCY OPERATION
- CO-PACKAGED WITH TURBOSWITCH™ ANTIPARALLEL DIODE


DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the Power-MESH IGBTs, with outstanding perfomances.

The suffix "H" identifies a family optimized for high frequen-cy applications (up to 120kHz)in order to achieve very high switching performances (reducer tfall) mantaining a low voltage drop.

APPLICATIONS

- HIGH FREQUENCY MOTOR CONTROLS
- SMPS AND PFC IN BOTH HARD SWITCH AND RESONANT TOPOLOGIES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VCES	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{GE}	Gate-Emitter Voltage	± 20	V
lc	Collector Current (continuous) at T _C = 25°C	100	Α
Ic	Collector Current (continuous) at T _C = 100°C	50	Α
I _{CM} (•)	Collector Current (pulsed)	400	Α
P _{TOT}	Total Dissipation at T _C = 25°C	300	W
	Derating Factor	2.4	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) PULSE WIDTH LIMITED BY SAFE OPERATING AREA

March 2003 1/8

STGE50NB60HD

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	0.416	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	30	°C/W
Rthc-h	Thermal Resistance Case-heatsink Typ	0.1	°C/W

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collectro-Emitter Breakdown Voltage	$I_C = 250 \mu\text{A}, V_{GE} = 0$	600			٧
I _{CES}	Collector cut-off	V _{CE} = Max Rating, T _C = 25 °C			250	μΑ
	$(V_{GE} = 0)$	V _{CE} = Max Rating, T _C = 125 °C			1000	μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ± 20V , V _{CE} = 0			± 100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	3		5	V
V _{CE(sat)}	Collector-Emitter Saturation	$V_{GE} = 15V, I_C = 50 A$		2.3	2.8	V
	Voltage	V _{GE} = 15V, I _C = 50 A, Tj =125°C	0 1	1.9		V

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	V _{CE} = 25 V , I _C = 50 A		22		S
Cies	Input Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		4500		pF
Coes	Output Capacitance	OF		450		pF
C _{res}	Reverse Transfer Capacitance			90		pF
Q _g Q _{ge} Q _{gc}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	V _{CE} = 480V, I _C = 50 A, V _{GE} = 15V		260 28 15		nC nC nC
I _{CL}	Latching Current	$V_{clamp} = 480 \text{ V}$ Tj = 150°C , R _G = 10 Ω	200			Α

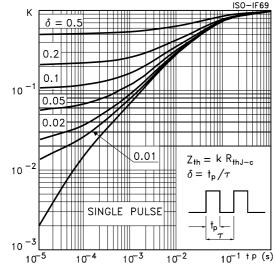
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{CC} = 480 \text{ V}, I_{C} = 50 \text{ A}$		20		ns
t _r	Rise Time	$R_G = 10\Omega$, $V_{GE} = 15 \text{ V}$		70		ns
(di/dt) _{on} Eon	Turn-on Current Slope Turn-on Switching Losses	V_{CC} = 480 V, I_{C} = 50 A, R_{G} =10 Ω V_{GE} = 15 V, T_{j} = 125°C		350 950		A/μs μJ

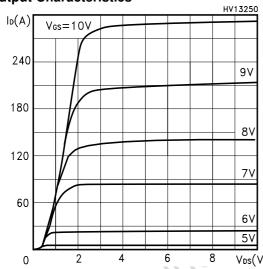
ELECTRICAL CHARACTERISTICS (CONTINUED)

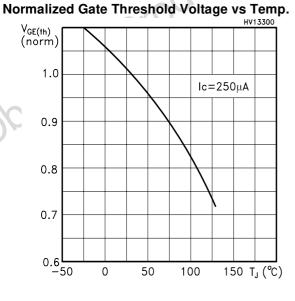
SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	$V_{CC} = 480 \text{ V}, I_{C} = 50 \text{ A},$		166		ns
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 10 \Omega$, $V_{GE} = 15 V$		48		ns
$t_{d(off)}$	Delay Time			326		ns
t _f	Fall Time			90		ns
E _{off} (**)	Turn-off Switching Loss			2.1		mJ
E _{ts}	Total Switching Loss			3		mJ
t _c	Cross-over Time	$V_{CC} = 480 \text{ V}, I_{C} = 50 \text{ A},$		270		ns
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 10 \Omega$, $V_{GE} = 15 V$ $T_{j} = 125 °C$		75		ns
t _d (off)	Delay Time	1) = 120 0		340		ns
t _f	Fall Time			200		ns
E _{off} (**)	Turn-off Switching Loss			2.9		mJ
E _{ts}	Total Switching Loss			3.85		mJ

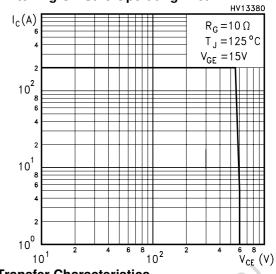

COLLECTOR-EMITTER DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _f I _{fm}	Forward Current Forward Current pulsed		P		50 400	A A
V _f	Forward On-Voltage	I _f = 50 A I _f = 50 A , Tj = 125 °C		1.65 2	2	V V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_f = 50 \text{ A} \text{ ,V}_R = 100 \text{ V},$ $T_j = 125^{\circ}\text{C}, \text{ di/dt} = 100\text{A}/\mu\text{s}$		135 500 7.5		ns nC A

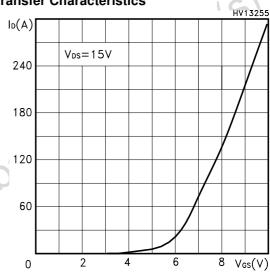

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.

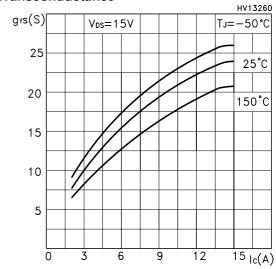

pera standard 2. Pulse width limited by max. junction temperature. (**)Losses include Also the Tail (Jedec Standardization)

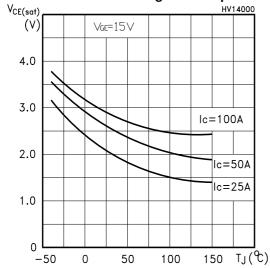
Thermal Impedance

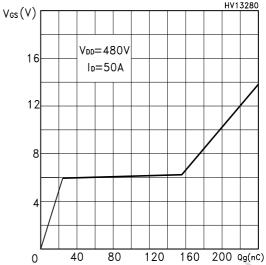


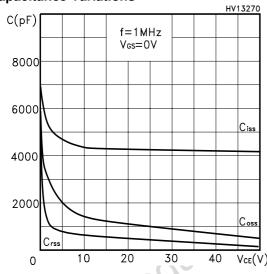
Output Characteristics

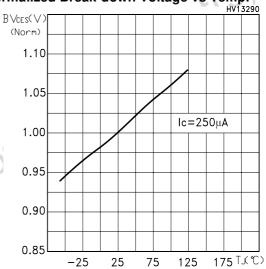


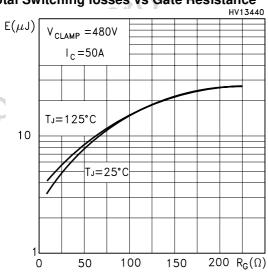

Switching Off Safe Operating Area

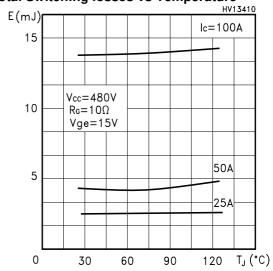

Transfer Characteristics


Transconductance

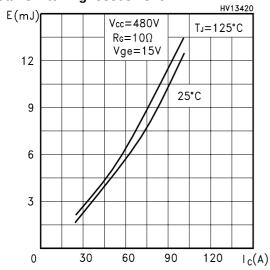

Collector-Emitter On Voltage vs Temperature


Gate-Charge vs Gate-Emitter Voltage


Capacitance Variations


Normalized Break-down Voltage vs Temp.

Total Switching losses vs Gate Resistance



Total Switching losses vs Temperature

477°

Total Switching losses vs lc

Diode Forward Voltage

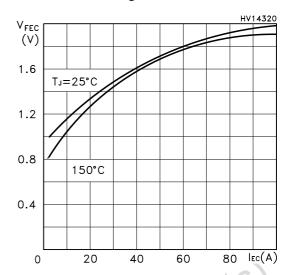
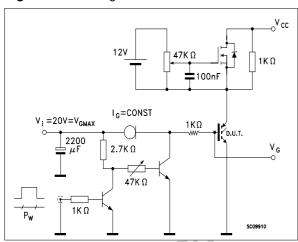
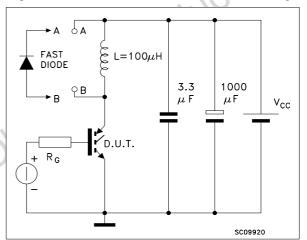
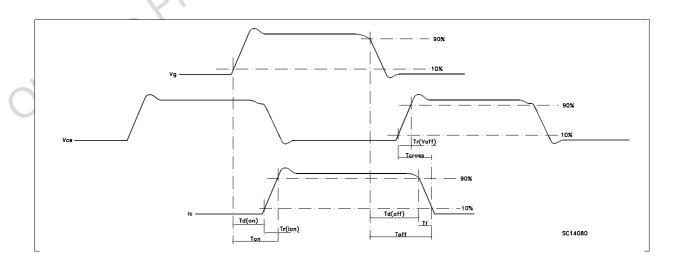
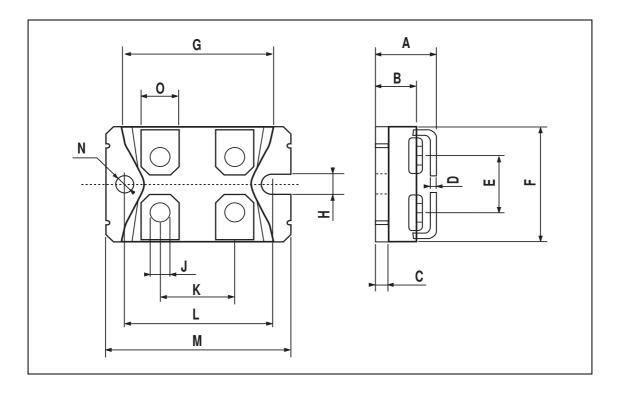


Fig. 1: Gate Charge test Circuit


Fig. 2: Test Circuit For Inductive Load Switching

ISOTOP MECHANICAL DATA

DIM.		mm				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	11.8		12.2	0.466		0.480
В	8.9		9.1	0.350		0.358
С	1.95		2.05	0.076		0.080
D	0.75		0.85	0.029		0.033
E	12.6		12.8	0.496		0.503
F	25.15		25.5	0.990		1.003
G	31.5		31.7	1.240		1.248
Н	4			0.157		
J	4.1		4.3	0.161		0.169
К	14.9		15.1	0.586		0.594
L	30.1		30.3	1.185		1.193
М	37.8		38.2	1.488		1.503
N	4			0.157		
0	7.8		8.2	0.307		0.322

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477. 8/8