

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGF20M65DF2

Trench gate field-stop IGBT, M series 650 V, 20 A low loss

Datasheet - production data

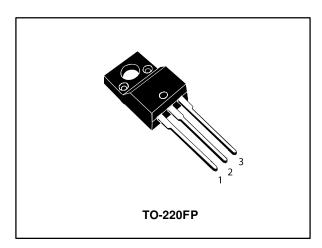
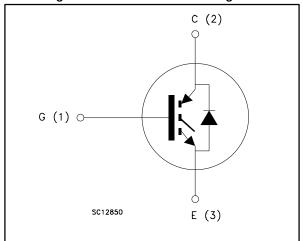



Figure 1: Internal schematic diagram

Features

- High short-circuit withstand time
- $V_{CE(sat)} = 1.55 \text{ V (typ.)} @ I_C = 20 \text{ A}$
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series of IGBTs, which represent an optimum compromise in performance to maximize the efficiency of inverter systems where low-loss and short-circuit capability are essential. Furthermore, a positive V_{CE(sat)} temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGF20M65DF2	G20M65DF2	TO-220FP	Tube

Contents STGF20M65DF2

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics curves	6
3	Test cir	rcuits	11
4	Packag	ge information	12
	4.1	TO-220FP package information	13
5	Revisio	on history	15

STGF20M65DF2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0)	650	V
lc ⁽¹⁾	Continuous collector current at T _C = 25 °C	40	Α
lc ⁽¹⁾	Continuous collector current at T _C = 100 °C	20	Α
ICP ⁽²⁾	Pulsed collector current	80	Α
V_{GE}	Gate-emitter voltage	±20	V
I _F ⁽¹⁾	Continuous forward current at T _C = 25 °C	40	Α
I _F ⁽¹⁾	Continuous forward current at T _C = 100 °C	20	Α
I _{FP} ⁽²⁾	Pulsed forward current	80	Α
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 °C)	2.5	kV
Ртот	Total dissipation at $T_C = 25$ °C	32.6	W
T _{STG}	Storage temperature range	- 55 to 150	°C
TJ	Operating junction temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{th} JC	Thermal resistance junction-case IGBT	4.6	°C/W
RthJC	Thermal resistance junction-case diode	6.25	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

⁽¹⁾Limited by maximum junction temperature.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by maximum junction temperature.

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	650			V	
		$V_{GE} = 15 \text{ V}, I_{C} = 20 \text{ A}$		1.55	2.0		
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 20 A, T _J = 125 °C		1.95		V	
		V _{GE} = 15 V, I _C = 20 A, T _J = 175 °C		2.1			
		I _F = 20 A		1.85			
V_{F}	Forward on-voltage	I _F = 20 A, T _J = 125 °C		1.65		V	
		I _F = 20 A, T _J = 175 °C		1.55			
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 500 \mu A$	5	6	7	V	
I _{CES}	Collector cut-off current	$V_{GE} = 0 \text{ V}, V_{CE} = 650 \text{ V}$			25	μΑ	
I _{GES}	Gate-emitter leakage current	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			250	μΑ	

Table 5: Dynamic characteristics

Table 3. Dynamic Characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	1688	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	95	-	pF
Cres	Reverse transfer capacitance	Val = 0 V	-	35	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 20 A,	-	63	-	
Q _{ge}	Gate-emitter charge $V_{GE} = 15 \text{ V (see } Figure 30:$		-	15	-	nC
Qgc	Gate-collector charge	" Gate charge test circuit")	-	26	-	

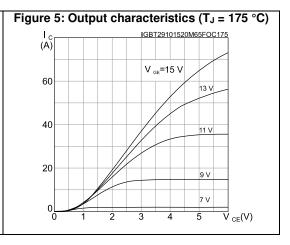
Table 6: IGBT switching characteristics (inductive load)

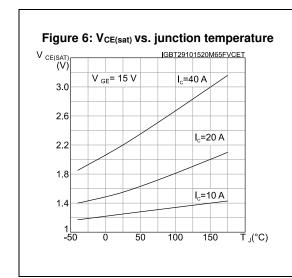
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			26	-	ns
tr	Current rise time			10.8	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 20 A,		1409	-	A/μs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_G = 12 \Omega$		108	-	ns
tf	Current fall time	(see Figure 29: " Test circuit for inductive load		65	-	ns
E _{on} (1)	Turn-on switching energy	switching")		0.14	-	mJ
E _{off} (2)	Turn-off switching energy			0.56	-	mJ
Ets	Total switching energy			0.7	-	mJ
t _{d(on)}	Turn-on delay time			28.4	-	ns
tr	Current rise time			11.2	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 20 A,		1393	-	A/μs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_G = 12 \Omega$		107	-	ns
tf	Current fall time	T _J = 175 °C (see Figure 29: " Test circuit for		145	-	ns
E _{on} (1)	Turn-on switching energy	inductive load switching")		0.3	-	mJ
E _{off} (2)	Turn-off switching energy			0.85	-	mJ
E _{ts}	Total switching energy			1.15	1	mJ
		V _{CC} = 400 V, V _{GE} = 13 V, T _{Jstart} = 150 °C	10		-	
t _{sc}	Short-circuit withstand time	V _{CC} = 400 V, V _{GE} = 15 V, T _{Jstart} = 150 °C	6		-	μs

Notes:

Table 7: Diode switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
trr	Reverse recovery time		-	166		ns
Qrr	Reverse recovery charge	$I_F = 20 \text{ A}, V_R = 400 \text{ V},$	-	690		nC
Irrm	Reverse recovery current	V _{GE} = 15 V (see <i>Figure 29:</i> "	-	13.2		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	Test circuit for inductive load switching') di/dt = 1000 A/μs	-	769		A/μs
Err	Reverse recovery energy		-	81		μJ
t _{rr}	Reverse recovery time		-	281		ns
Qrr	Reverse recovery charge	$I_F = 20 \text{ A}, V_R = 400 \text{ V},$	-	2010		nC
I _{rrm}	Reverse recovery current	$V_{GE} = 15 \text{ V T}_{J} = 175 \text{ °C}$ (see Figure 29: " Test circuit	-	19.6		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during tb	for inductive load switching") di/dt = 1000 A/μs	-	370		A/μs
Err	Reverse recovery energy		-	215		μJ


⁽¹⁾Including the reverse recovery of the diode.


 $[\]ensuremath{^{(2)}}\mbox{Including}$ the tail of the collector current.

2.1 Electrical characteristics curves

Figure 4: Output characteristics (T_J = 25 °C)

| Comparison of the comparison of t

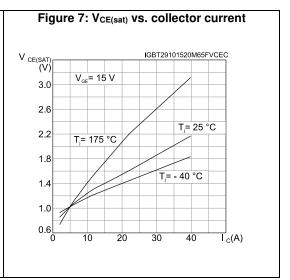
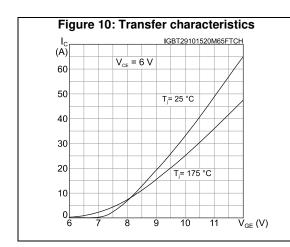
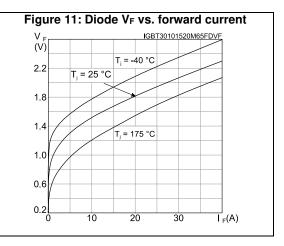
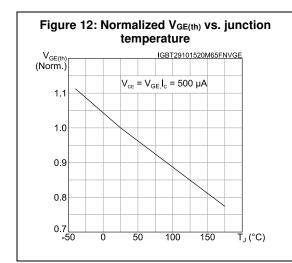





Figure 9: Forward bias safe operating area Ic (A) IGBT29101520M65FFSOA 1 μ 100 μ s single pulse, $T_c = 25^{\circ}C$, $T_J \le 175^{\circ}C$, $V_{GE} = 15$ V 1 ms V_{CE} (V)

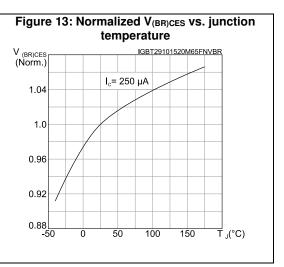


Figure 14: Capacitance variations

(pF)

103

Coes

100

100

101

100

100

101

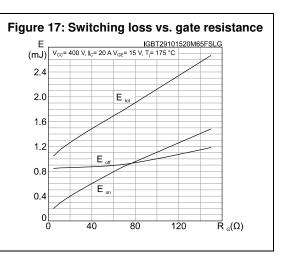
100

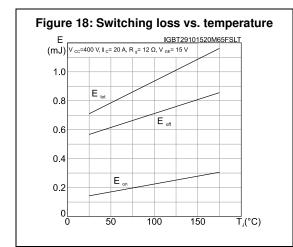
101

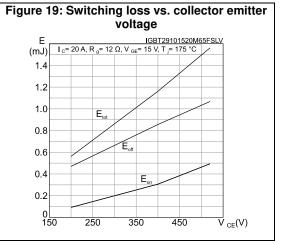
102

VCE (V)

Figure 15: Gate charge vs. gate-emitter voltage

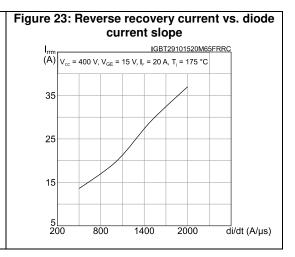

V_{GE}
(V)
V_{CC}= 520 V, I_C= 20 A I_G=1mA

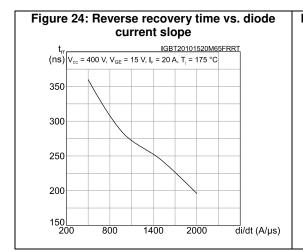

12

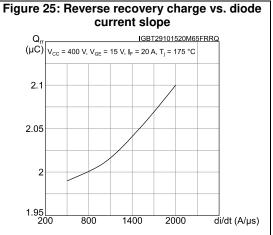

8

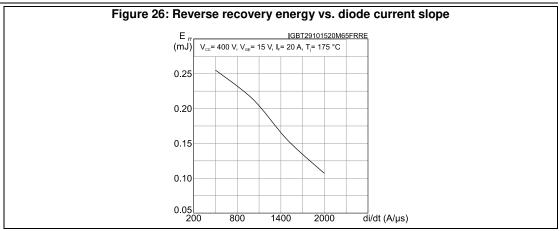
4

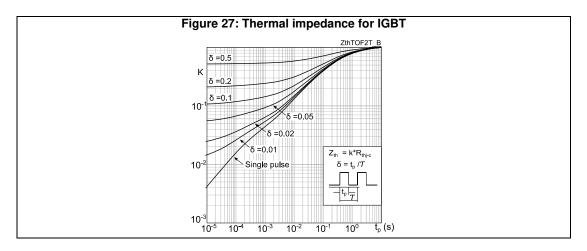
0
0
10
20
30
40
50
60
70
Q_g (nC)

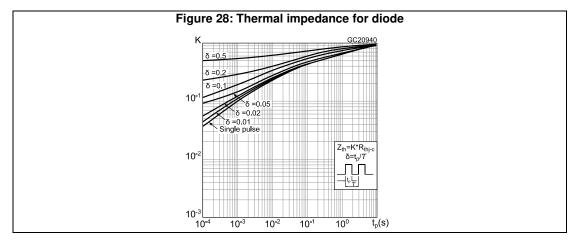


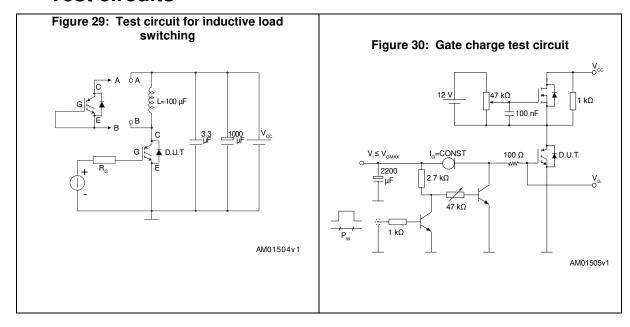

STGF20M65DF2 Electrical characteristics

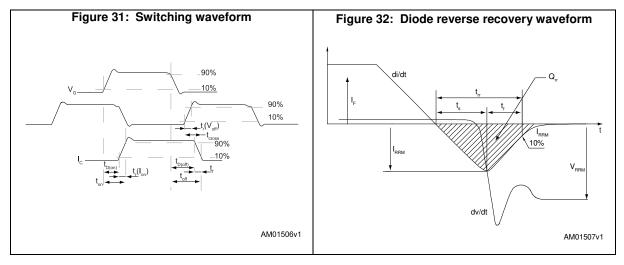

Figure 20: Short-circuit time and current vs. V_{GE} E IGBT29101520M65FSCV I_{SC} (A) t_{sc} (µs) T ≤ 150 °C V _{cc}≤ 400 V 20 130 15 100 70 10 l sç 40 10 V _{GE}(V) 12 13 14


Figure 22: Switching times vs. gate resistance


t GBT29101520M65FSTR (ns) $V cc^{2} 400 \text{ V}, V ce^{2} 15 \text{ V}, I c^{2} 20 \text{ A}, T = 175 °C$ $t d_{d(on)}$ $t d_{d(on)}$

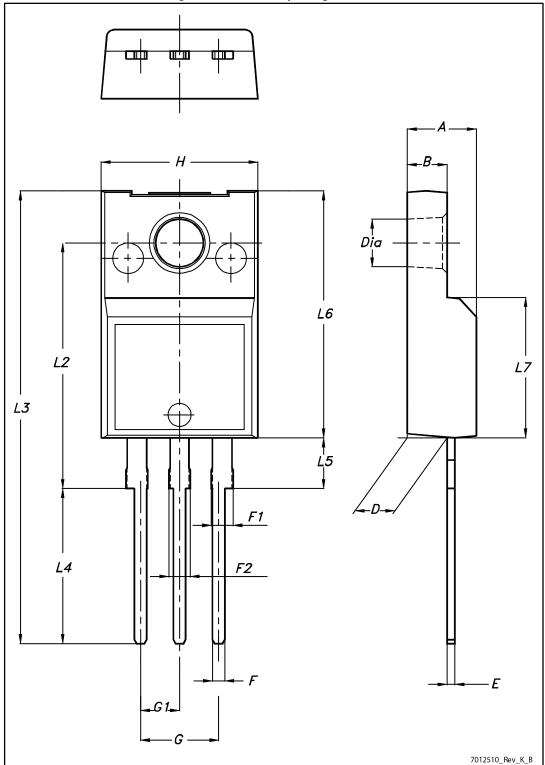






STGF20M65DF2 Test circuits

3 Test circuits


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STGF20M65DF2 Package information

4.1 TO-220FP package information

Figure 33: TO-220FP package outline

14/16

Table 8: TO-220FP package mechanical data

D!		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

STGF20M65DF2 Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
02-Nov-2015	1	First release.
24-Feb-2016	2	Document status promoted from preliminary to production data
10-Mar-2016	3	Updated Figure 13: "Normalized V(BR)CES vs. junction temperature". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved