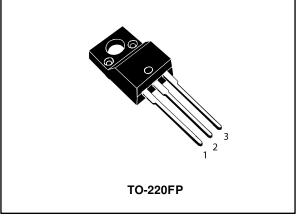
imall

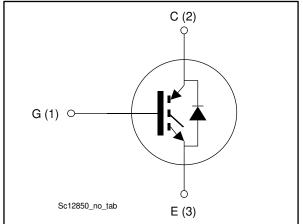
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Trench gate field-stop IGBT, M series 650 V, 4 A low loss

Datasheet - production data

Figure 1: Internal schematic diagram

Features

- 6 µs of short-circuit withstand time
- V_{CE(sat)} = 1.6 V (typ.) @ I_C = 4 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive $V_{CE(sat)}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGF4M65DF2	G4M65DF2	TO-220FP	Tube

DocID028678 Rev 4

This is information on a product in full production.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	11
4	Packag	e information	12
	4.1	TO-220FP package information	13
5	Revisio	on history	15

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCES	Collector-emitter voltage (V _{GE} = 0 V)	650	V
lc ⁽¹⁾	Continuous collector current at $T_C = 25 \ ^\circ C$	8	А
IC	Continuous collector current at Tc = 100 °C	4	А
Icp ⁽²⁾	Pulsed collector current	16	А
V_{GE}	Gate-emitter voltage	±20	V
le ⁽¹⁾	Continuous forward current at $T_C = 25$ °C	8	А
IF	Continuous forward current at $T_C = 100 \ ^{\circ}C$	4	А
I _{FP} ⁽²⁾	Pulsed forward current	16	А
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1s, TC= 25 $^{\circ}$ C)	2.5	kV
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	23	W
Tstg	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	°C

Notes:

⁽¹⁾Limited by maximum junction temperature.

 $^{(2)}\mbox{Pulse}$ width limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	6.5	°C/W
RthJC	Thermal resistance junction-case diode	7	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

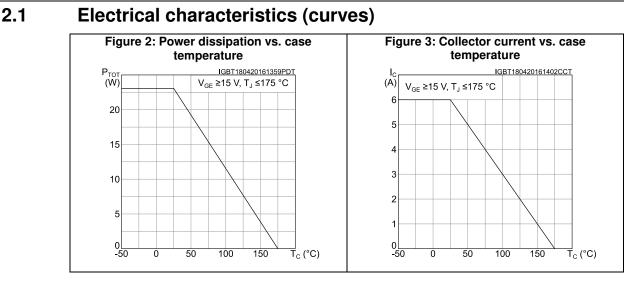
I able 4: Static characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)CES}$	Collector-emitter breakdown voltage	$V_{GE}=0~V,~I_C=250~\mu A$	650			V
		V_{GE} = 15 V, I_C = 4 A		1.6	2.1	
V _{CE(sat)} Collector-emitter saturation voltage		$V_{GE} = 15 V, I_C = 4 A, T_J = 125 \ ^{\circ}C$		1.9		v
	Voltage	$V_{GE} = 15 V, I_C = 4 A, T_J = 175 \ ^{\circ}C$		2.1		
		IF = 4 A		1.9		
VF	Forward on-voltage	I _F = 4 A, T _J = 125 °C		1.7		V
		I _F = 4 A, T _J = 175 °C		1.6		
$V_{\text{GE(th)}}$	Gate threshold voltage	V_{CE} = V_{GE} , I_C = 250 μ A	5	6	7	V
ICES	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
I _{GES}	Gate-emitter leakage current	$V_{CE}=0~V,~V_{GE}=\pm~20~V$			±250	μΑ

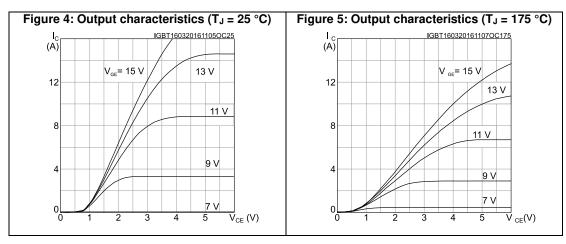
Table 4: Static characteristics

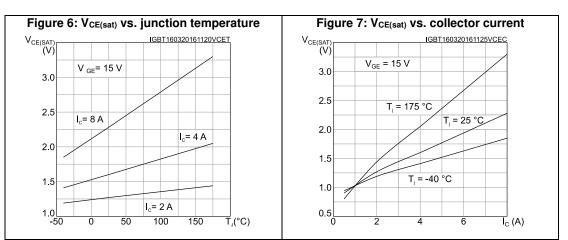
Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance			369	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	24.8	-	pF
Cres	Reverse transfer capacitance		-	8	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 4 A,	-	15.2	-	
Q _{ge}	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 30: " Gate</i>	-	3	-	nC
Q _{gc}	Gate-collector charge	charge test circuit")	-	7	-	

Electrical characteristics


	Table 6: IGBT switching characteristics (inductive load)						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
td(on)	Turn-on delay time			12	-	ns	
tr	Current rise time			6.9	-	ns	
(di/dt) _{on}	Turn-on current slope	$V_{CE} = 400 V, I_{C} = 4 A,$		480	-	A/µs	
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, \text{ R}_{G} = 47 \Omega$ (see <i>Figure 29: " Test</i>		86	-	ns	
t _f	Current fall time	circuit for inductive load		120	-	ns	
Eon ⁽¹⁾	Turn-on switching energy	switching")		0.040	-	mJ	
E _{off} ⁽²⁾	Turn-off switching energy			0.136	-	mJ	
Ets	Total switching energy			0.176	-	mJ	
td(on)	Turn-on delay time			11.6	-	ns	
tr	Current rise time			8	-	ns	
(di/dt) _{on}	Turn-on current slope	$V_{CE} = 400 V, I_C = 4 A, V_{GE} = 15 V, R_G = 47 \Omega, T_{CE} = 15 V, R_G = 17 \Omega, T_{CE} = 175 \Omega$		410	-	A/µs	
td(off)	Turn-off-delay time			85	-	ns	
tr	Current fall time	T _J = 175 °C (see <i>Figure 29: " Test circuit</i>		211	-	ns	
Eon ⁽¹⁾	Turn-on switching energy	for inductive load switching")		0.067	-	mJ	
E _{off} ⁽²⁾	Turn-off switching energy	ergy		0.210	-	mJ	
Ets	Total switching energy			0.277	-	mJ	
	Short-circuit withstand time	$\label{eq:VCC} \begin{array}{l} V_{CC} \leq 400 \ V, \ V_{GE} = 15 \ V, \\ T_{Jstart} = 150 \ ^{\circ}C \end{array}$	6		-	μs	
t _{sc}		$\label{eq:VCC} \begin{array}{l} V_{CC} \leq 400 \ V, \ V_{GE} = 13 \ V, \\ T_{Jstart} = 150 \ ^{\circ}C \end{array}$	10		-	μs	


Notes:


⁽¹⁾Including the reverse recovery of the diode. ⁽²⁾Including the tail of the collector current.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
trr	Reverse recovery time		-	133	-	ns
Q _{rr}	Reverse recovery charge	I _F = 4 A, V _B = 400 V,	-	140	-	nC
Irrm	Reverse recovery current	V _{GE} = 15 V, di/dt = 800 A/µs	-	5	-	А
dlrr/dt	Peak rate of fall of reverse recovery current during tb	for inductive load switching"		520	-	A∕µs
Err	Reverse recovery energy			15	-	μJ
t _{rr}	Reverse recovery time		-	236	-	ns
Qrr	Reverse recovery charge	$I_F = 4 A, V_R = 400 V,$	-	370	-	nC
Irrm	Reverse recovery current	V _{GE} = 15 V, T _J = 175 °C, di/dt = 800 A/μs	-	6.6	-	А
dlrr/dt	Peak rate of fall of reverse recovery current during tb	(see Figure 29: " Test circuit for inductive load switching")	-	378	-	A∕µs
Err	Reverse recovery energy		-	32	-	μJ

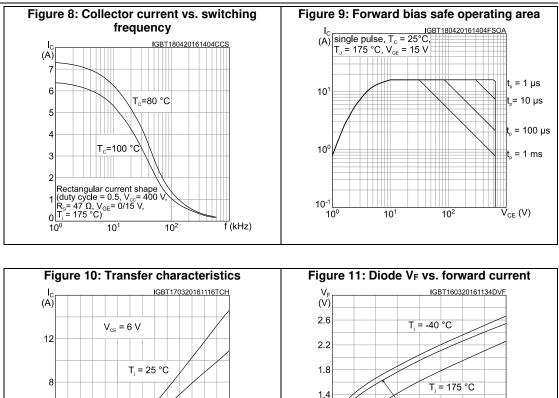
Δ

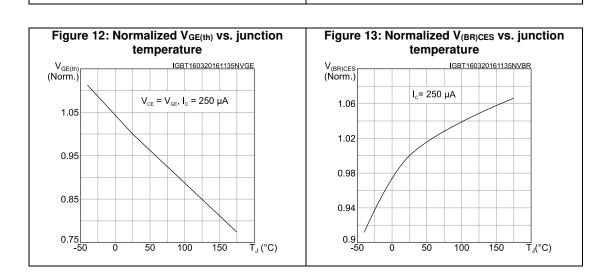
0

6

T_i = 175 °C

11


12


 $\overline{V}_{GE}(V)$

10

8 9

Electrical characteristics

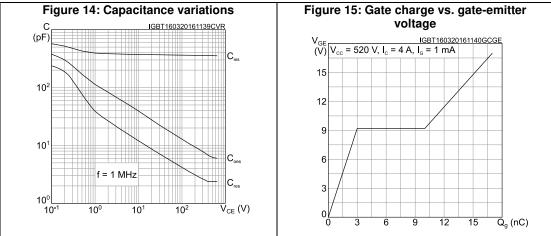
1.0

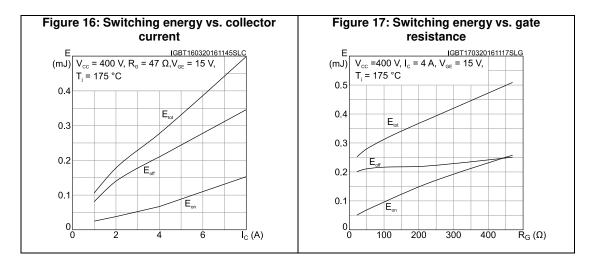
0.6 0.2 T, = 25 °C

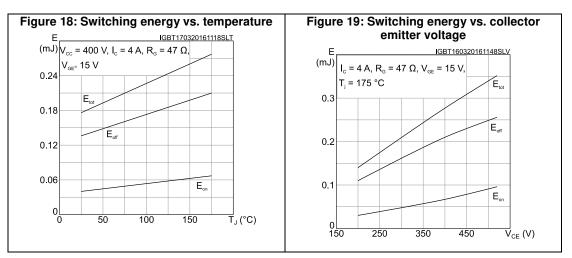
2

4

6

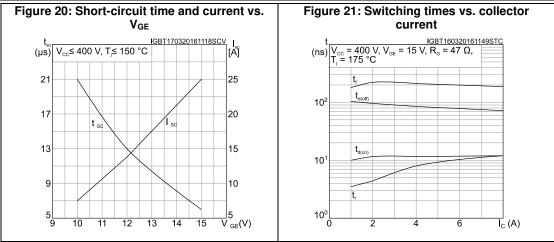

57

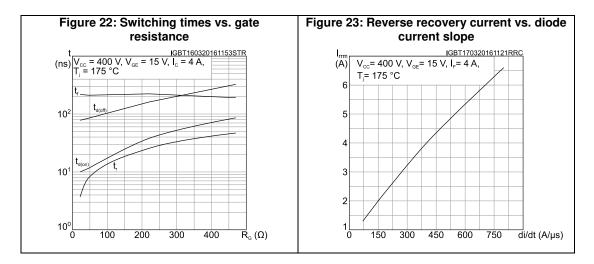

DocID028678 Rev 4

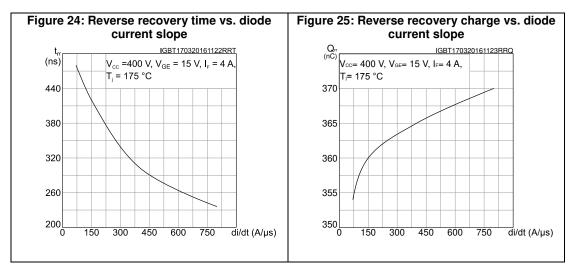

 $\vec{\mathsf{I}}_{\mathsf{F}}(\mathsf{A})$

Electrical characteristics

STGF4M65DF2

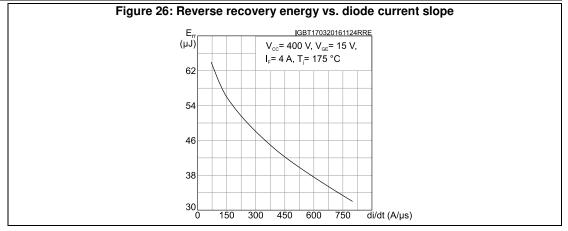


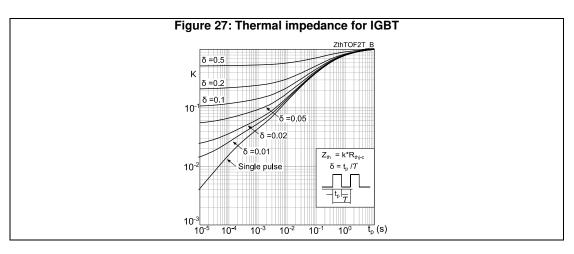

DocID028678 Rev 4

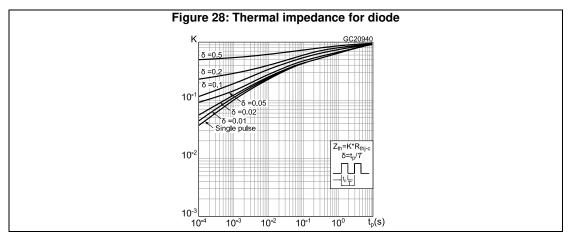


57

Electrical characteristics

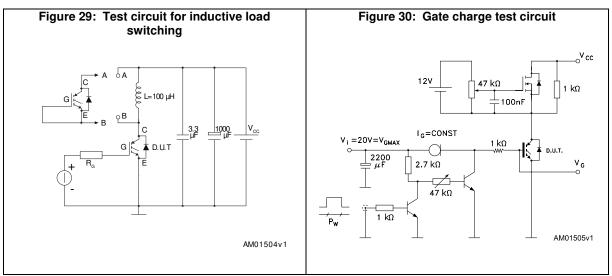


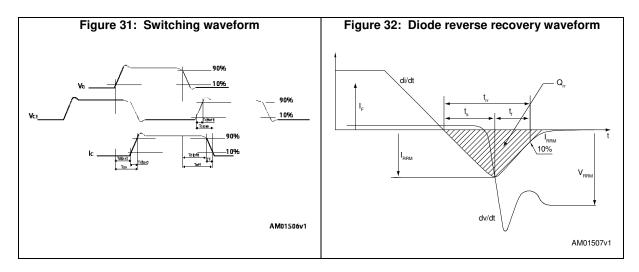



DocID028678 Rev 4

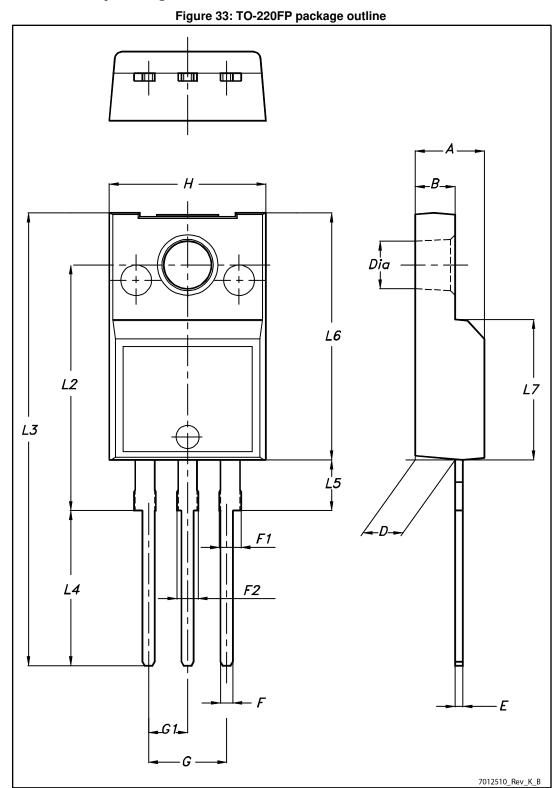
Electrical characteristics

STGF4M65DF2





3 Test circuits


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

57

4.1 TO-220FP package information

DocID028678 Rev 4

Package information

Table 8: TO-220FP package mechanical data

STGF4M65DF2

Table 8: TO-220FP package mechanical data				
Dim.		mm		
Dim.	Min.	Тур.	Max.	
A	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
25-Nov-2015	1	First release.
18-Apr-2016	2	Modified: features in cover page. Modified: <i>Table 2: "Absolute maximum ratings"</i> , <i>Table 3: "Thermal data"</i> , <i>Table 4: "Static characteristics"</i> , <i>Table 5: "Dynamic characteristics"</i> , <i>Table 6: "IGBT switching characteristics (inductive load)"</i> and <i>Table 7: "Diode switching characteristics (inductive load)"</i> Added: <i>Section 2.1: "Electrical characteristics (curves)"</i> . Minor text changes
13-Jul-2016	3	Document status promoted from preliminary to production data.
21-Nov-2016	4	Updated Figure 1: "Internal schematic diagram" Updated Table 2: "Absolute maximum ratings" Updated Figure 25: "Reverse recovery charge vs. diode current slope" Minor text changes

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

