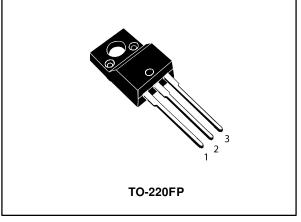
imall

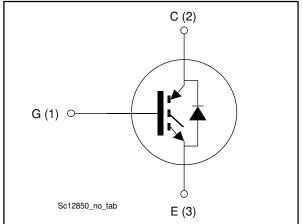
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Trench gate field-stop IGBT, M series 650 V, 6 A low loss

Datasheet - production data

Figure 1: Internal schematic diagram

Features

- 6 µs of short-circuit withstand time
- V_{CE(sat)} = 1.55 V (typ.) @ I_C = 6 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive $V_{CE(sat)}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGF6M65DF2	G6M65DF2	TO-220FP	Tube

DocID028668 Rev 3

This is information on a product in full production.

Contents

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 STGF6M65DF2 electrical characteristics curves	7
3	Test circuits	12
4	Package information	
	4.1 TO-220FP package information	14
5	Revision history	16

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCES	Collector-emitter voltage (V _{GE} = 0 V)	650	V
lc ⁽¹⁾	Continuous collector current at T _C = 25 °C	12	А
IC	Continuous collector current at Tc = 100 °C	6	А
Icp ⁽²⁾	Pulsed collector current	24	А
V_{GE}	Gate-emitter voltage	±20	V
F ⁽¹⁾	Continuous forward current at $T_c = 25 \text{ °C}$	12	А
IF	Continuous forward current at T _c = 100 °C	6	А
_{FP} ⁽²⁾	Pulsed forward current	24	А
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, $T_C = 25 \ ^{\circ}C$)	2.5	kV
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	24.2	W
T _{STG}	Storage temperature range	- 55 to 150	°C
TJ	Operating junction temperature range	- 55 to 175	°C

Notes:

 $\ensuremath{^{(1)}}\xspace$ Limited by maximum junction temperature.

 $^{(2)}\mbox{Pulse}$ width limited by maximum junction temperature.

Table 3	3: Therm	al data
---------	----------	---------

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case IGBT	6.2	°C/W
RthJC	Thermal resistance junction-case diode	7	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE}=0~V,~I_C=250~\mu A$	650			V
		$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 6 \text{ A}$		1.55	2.0	
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{GE} = 15 V, I_C = 6 A,$ $T_J = 125 \ ^{\circ}C$		1.9		V
	Voltage			2.1		
		IF = 6 A		2.2		
VF	Forward on-voltage	I _F = 6 A, T _J = 125 °C		2.0		V
		I _F = 6 A, T _J = 175 °C		1.9		
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$	5	6	7	V
Ices	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
I _{GES}	Gate-emitter leakage current	$V_{CE} = 0 V, V_{GE} = \pm 20 V$			±250	μA

Table 4: Static characteristics

Table 5: Dynamic characteristics

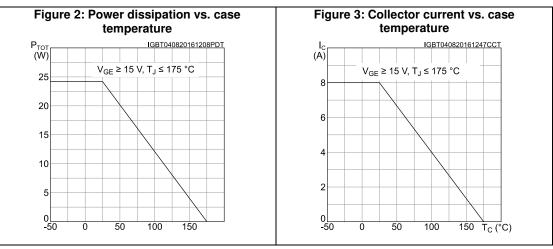
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	530	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	31	-	pF
Cres	Reverse transfer capacitance		-	11	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 6 A,	-	21.2	-	
Qge	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 30:</i>	-	5.2	-	nC
Q _{gc}	Gate-collector charge	" Gate charge test circuit")	-	8.8	-	

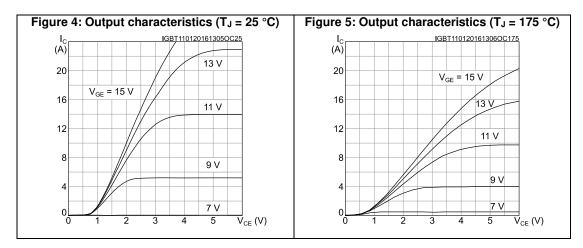
	Table	6: IGBT switching characteristics (inducti	ve loac)		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	15	-	ns
tr	Current rise time		-	5.8	-	ns
(di/dt) _{on}	Turn-on current slope		-	828	-	A/µs
$t_{d(\text{off})}$	Turn-off-delay time		-	90	-	ns
t _f	Current fall time	$V_{CE} = 400 \text{ V}, \text{ Ic} = 6 \text{ A}, \text{ V}_{GE} = 15 \text{ V},$ $R_G = 22 \Omega$ (see <i>Figure 29: " Test circuit</i> <i>for inductive load switching"</i>)	-	130	-	ns
E _{on} ⁽¹⁾	Turn-on switching energy		-	0.036	-	mJ
E _{off} ⁽²⁾	Turn-off switching energy		-	0.200	-	mJ
Ets	Total switching energy		-	0.236	-	mJ
t _{d(on)}	Turn-on delay time		-	17	-	ns
tr	Current rise time		-	7	-	ns
(di/dt) _{on}	Turn-on current slope		-	685	-	A/µs
$t_{d(off)}$	Turn-off-delay time		-	86	-	ns
t _f	Current fall time	$V_{CE} = 400 \text{ V}, I_C = 6 \text{ A}, V_{GE} = 15 \text{ V},$ $R_G = 25 \Omega T_J = 175 \text{ °C} (\text{see Figure 29: "}$ Test circuit for inductive load switching")	-	205	-	ns
Eon ⁽¹⁾	Turn-on switching energy		-	0.064	-	mJ
E _{off} ⁽²⁾	Turn-off switching energy		-	0.290	-	mJ
E _{ts}	Total switching energy		-	0.354	-	mJ
+	Short-circuit	$V_{CC} \le 400 \text{ V}, \text{ V}_{GE} = 15 \text{ V}, \text{ T}_{Jstart} = 150 ^{\circ}\text{C}$	6		-	
t _{sc}	withstand time	V _{CC} ≤ 400 V, V _{GE} = 13 V, T _{Jstart} = 150 °C	10		-	μs

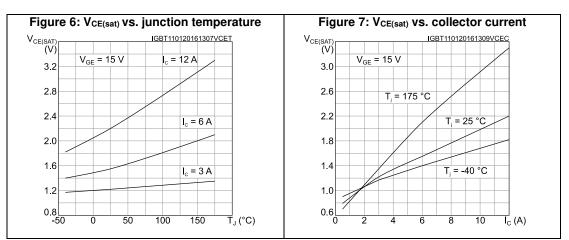
Notes:

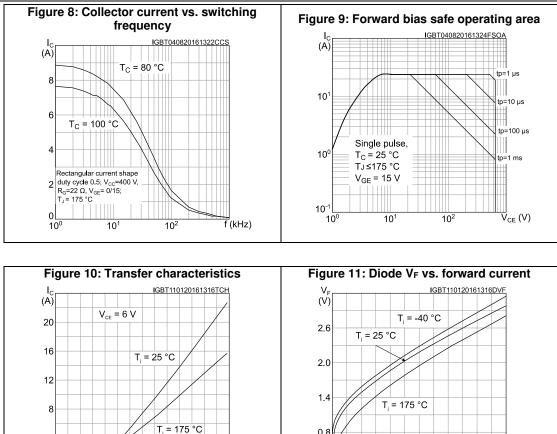
 $^{(1)}\ensuremath{\mathsf{Turn}}\xspace$ on switching energy includes reverse recovery of the diode.

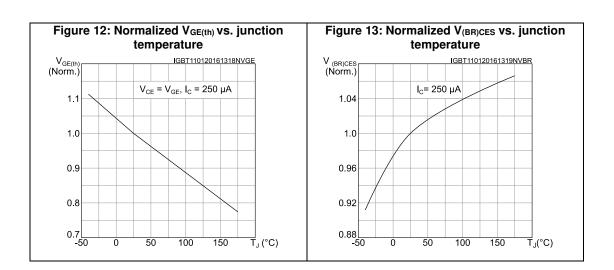
 $^{(2)}\mbox{Turn-off}$ switching energy also includes the tail of the collector current.




STGF6M65DF2


	Table 7: Diode switching characteristics (inductive load)							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
trr	Reverse recovery time		-	140		ns		
Qrr	Reverse recovery charge		-	210		nC		
Irrm	Reverse recovery current	I _F = 6 A, V _R = 400 V, V _{GE} = 15 V (see <i>Figure 29: " Test circuit for</i> <i>inductive load switching"</i>)	-	6.6		А		
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	$di/dt = 1000 \text{ A}/\mu\text{s}$	-	430		A/µs		
Err	Reverse recovery energy			16		μJ		
t _{rr}	Reverse recovery time		-	200		ns		
Qrr	Reverse recovery charge		-	473		nC		
Irrm	Reverse recovery current	$I_{F} = 6 \text{ A}, V_{R} = 400 \text{ V}, V_{GE} = 15 \text{ V}$ $T_{J} = 175 \text{ °C} (\text{see Figure 29: "Test}$ circuit for inductive load switching") di/dt = 1000 \text{ A}/\mu\text{s}	-	9.6		А		
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b		-	428		A/µs		
Err	Reverse recovery energy		-	32		μJ		

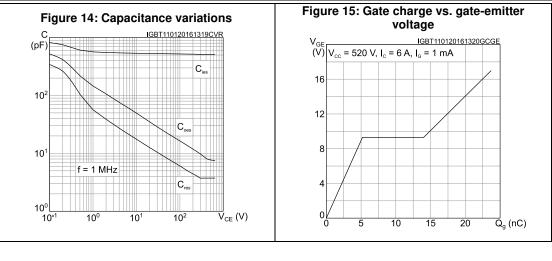


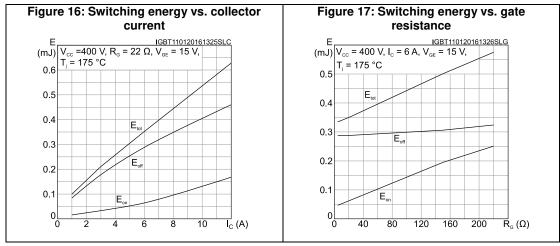


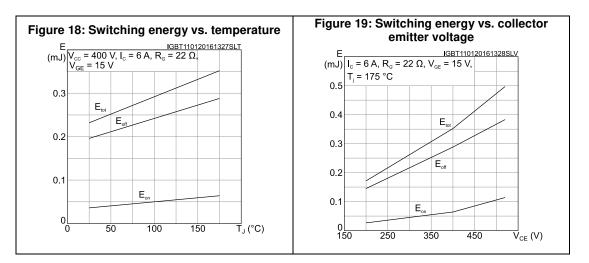
57

STGF6M65DF2

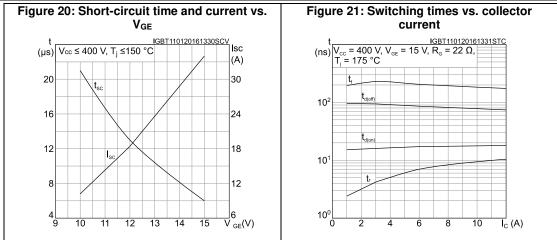
Ī_F (A)

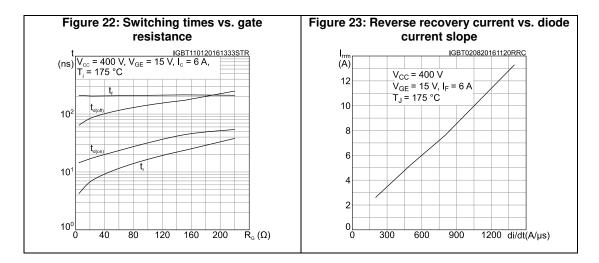


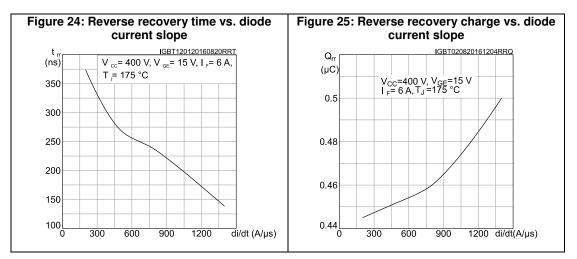

 $\overline{V}_{GE}\left(V
ight)$


0.8

0.2

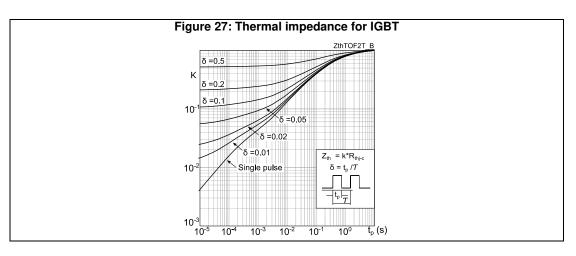


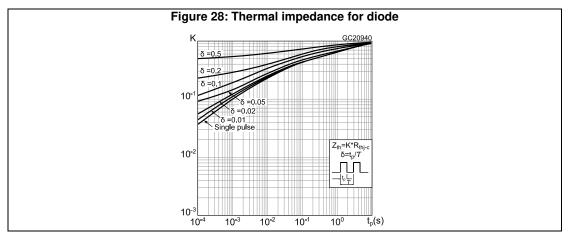




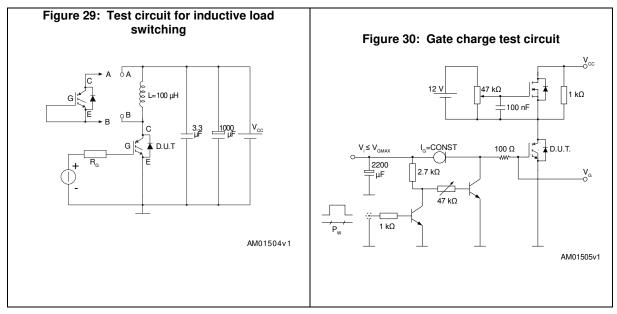
57

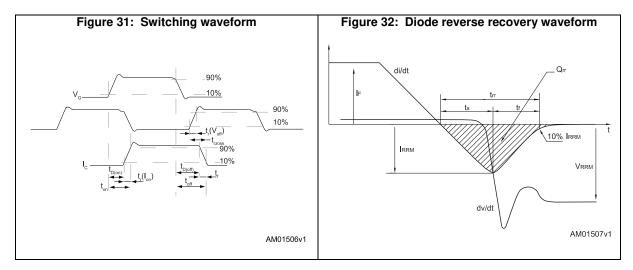
STGF6M65DF2



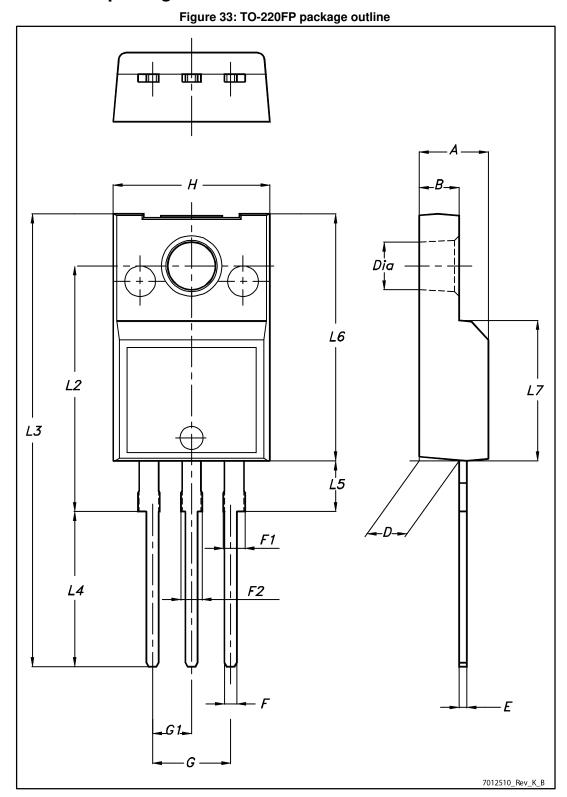


57


Electrical characteristics



3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-220FP package information

Package information

Table 8: TO-220FP package mechanical data

Dim.		mm		
Dini.	Min.	Тур.	Max.	
A	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

Revision history 5

Table 9: Document revision history	Table 9:	Document	revision	history
------------------------------------	----------	----------	----------	---------

Date	Revision	Changes
24-Nov-2015	1	First release.
24-Feb-2016	2	Document status promoted from preliminary to production data.
05-Aug-2016	3	Added Section 2.1: "STGF6M65DF2 electrical characteristics curves". Updated Section 1: "Electrical ratings" and Section 2: "Electrical characteristics".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

