imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGIPN3H60-H

SLLIMM[™]-nano small low-loss intelligent molded module IPM, 3 A, 600 V, 3-phase IGBT inverter bridge

Applications

Description

3-phase inverters for motor drives Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

This intelligent power module implements a compact, high performance AC motor drive in a simple, rugged design. It is composed of six IGBTs with freewheeling diodes and three half-

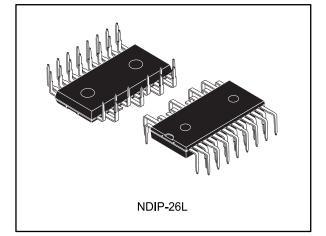
bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is

compactness in built-in motor applications, or

other low power applications where assembly

amplifier, completely uncommitted, and a

efficient protection circuit. SLLIMM™ is a


trademark of STMicroelectronics.

space is limited. This IPM includes an operational

comparator that can be used to design a fast and

optimized for thermal performance and

Datasheet - production data

Features

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes
- Optimized for low electromagnetic interference
- V_{CE(sat)} negative temperature coefficient
- 3.3 V, 5 V, 15 V CMOS/TTL inputs comparators with hysteresis and pull down/pull up resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Smart shutdown function
- Comparator for fault protection against overtemperature and overcurrent
- Op amp for advanced current sensing
- Optimized pinout for easy board layout

Table 1: Device summary

Order code	Marking	Package	Packing				
STGIPN3H60-H	GIPN3H60-H	NDIP-26L	Tube				

DocID024132 Rev 4

This is information on a product in full production.

Contents

Con	tents		
1	Internal	schematic diagram and pin configuration	3
2	Electrica	al ratings	6
	2.1	Absolute maximum ratings	6
	2.2	Thermal data	7
3	Electrica	al characteristics	8
	3.1	Inverter part	8
	3.2	Control part	
	3.3	Waveform definitions	13
4	Smart sl	hutdown function	14
5	Applicat	tion circuit example	16
	5.1	Guidelines	
6	Package	e information	18
	6.1	NDIP-26L type C package information	
	6.2	NDIP-26L packing information	21
7	Revisior	n history	22

1 Internal schematic diagram and pin configuration

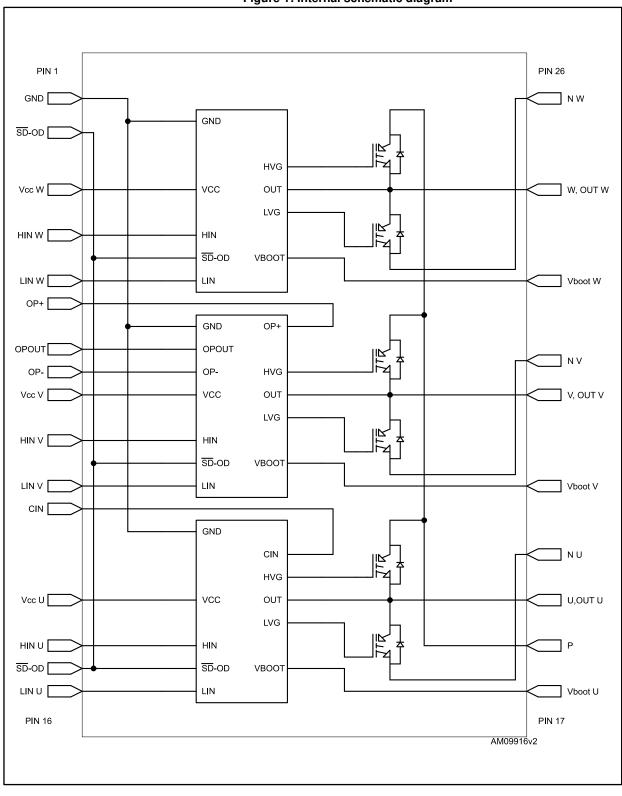


Figure 1: Internal schematic diagram

57

Internal schematic diagram and pin configuration

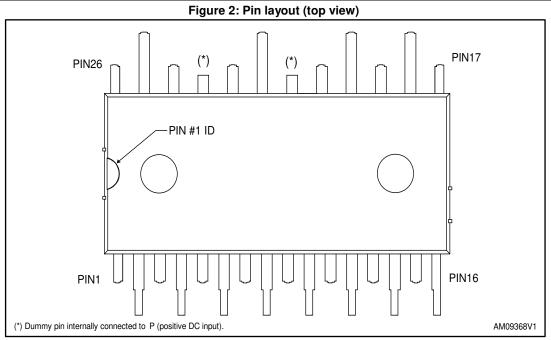

STGIPN3H60-H

Table 2: Pin description			
Pin	Symbol	Description	
1	GND	Ground	
2	SD / OD	Shut down logic input (active low) / open drain (comparator output)	
3	Vcc W	Low voltage power supply W phase	
4	HIN W	High side logic input for W phase	
5	LIN W	Low side logic input for W phase	
6	OP+	Op amp non inverting input	
7	OPout	Op amp output	
8	OP-	Op amp inverting input	
9	V _{CC} V	Low voltage power supply V phase	
10	HIN V	High side logic input for V phase	
11	LIN V	Low side logic input for V phase	
12	CIN	Comparator input	
13	Vcc U	Low voltage power supply for U phase	
14	HIN U	High side logic input for U phase	
15	SD / OD	Shut down logic input (active low) / open drain (comparator output)	
16	LIN U	Low side logic input for U phase	
17	VBOOT U	Bootstrap voltage for U phase	
18	Р	Positive DC input	
19	U, OUTu	U phase output	
20	Nυ	Negative DC input for U phase	
21	VBOOT V	Bootstrap voltage for V phase	
22	V, OUT_V	V phase output	
23	Nv	Negative DC input for V phase	
24	V_{BOOT} W	Bootstrap voltage for W phase	
25	W, OUTw	W phase output	
26	Nw	Negative DC input for W phase	

STGIPN3H60-H

Internal schematic diagram and pin configuration

2 Electrical ratings

2.1 Absolute maximum ratings

Symbol	Symbol Parameter			
VCES	Each IGBT collector emitter voltage ($V_{IN}^{(1)}=0$)	600	V	
± lc ⁽²⁾	Each IGBT continuous collector current at T _C = 25°C		А	
± I _{CP} ⁽³⁾	Each IGBT pulsed collector current	18	А	
Ртот	Each IGBT total dissipation at $T_c = 25^{\circ}C$	8	W	

Notes:

 $^{(1)}\mbox{Applied}$ between HINi, LINi and GND for i = U, V, W.

⁽²⁾Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

 $^{\rm (3)}{\rm Pulse}$ width limited by max junction temperature.

Symbol	Parameter	Min.	Max.	Unit
Vout	Output voltage applied between OUT_U , OUT_V , OUT_W - GND	V _{boot} - 21	V _{boot} + 0.3	V
Vcc	Low voltage power supply	- 0.3	21	V
V _{CIN}	Comparator input voltage	- 0.3	$V_{CC} + 0.3$	V
V _{op+}	OPAMP non-inverting input	- 0.3	Vcc + 0.3	V
V _{op-}	OPAMP inverting input	- 0.3	Vcc + 0.3	V
V _{boot}	Bootstrap voltage	- 0.3	620	V
VIN	Logic input voltage applied between HIN, LIN and GND	- 0.3	15	V
$V_{\overline{SD}/OD}$	Open drain voltage	- 0.3	15	V
$\Delta V_{\text{OUT/dT}}$	Allowed output slew rate		50	V/ns

Table 4: Control part

Table	5:	Total	system
-------	----	-------	--------

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, $t = 60$ s.)	1000	V
Tj	Power chips operating junction temperature range	-40 to 150	°C
Tc	Module operation case temperature range	-40 to 125	°C

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Value	Unit
RthJA	Thermal resistance junction-ambient	50	°C/W

3 Electrical characteristics

3.1 Inverter part

 $T_{\rm J}$ = 25 °C unless otherwise specified.

		Table 7: Static				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Collector-emitter saturation	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}{}^{(1)} = 0 \text{ to } 5 \text{ V}, I_{C} = 1 \text{ A}$	-	2.15	2.6	
V _{CE(sat)} Collector-e voltage		$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V}, I_C = 1 \text{ A}, T_J = 125 \text{ °C}$	-	1.65		V
Ices	Collector-cut off current $(V_{IN}^{(1)} = 0$ "logic state")	$V_{CE} = 550 \text{ V}, V_{CC} = V_{Boot} = 15 \text{ V}$	-		250	μA
VF	Diode forward voltage	$V_{IN}^{(1)}$ = 0 "logic state", I _C = 1 A	-		1.7	V

Notes:

 $^{(1)}\mbox{Applied}$ between HINi, LINi and G_{ND} for i = U, V, W.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ton ⁽¹⁾	Turn-on time		-	275	-	
t _{c(on)} ⁽¹⁾	Crossover time (on)	V _{DD} = 300 V,	-	90	-	
t _{off} ⁽¹⁾	Turn-off time	$V_{CC} = V_{boot} = 15 \text{ V},$	-	890	-	ns
t _{c(off)} ⁽¹⁾	Crossover time (off)	$V_{IN}^{(2)} = 0$ to 5 V, Ic = 1 A (see Figure 4: "Switching time definition")	-	125	-	
trr	Reverse recovery time		-	50	-	
Eon	Turn-on switching energy		-	18	-	
Eoff	Turn-off switching energy		-	13	-	μJ

Table 8: Inductive load switching time and energy

Notes:

 $^{(1)}$ ton and toFF include the propagation delay time of the internal drive. tc(ON) and tc(OFF) are the switching time of IGBT itself under the internally given gate driving condition.

 $^{(2)}\mbox{Applied}$ between HINi, LINi and GND for i = U, V, W.

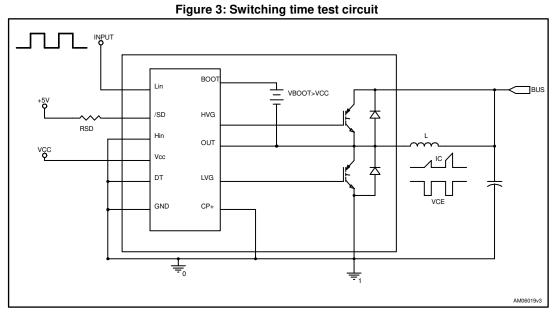
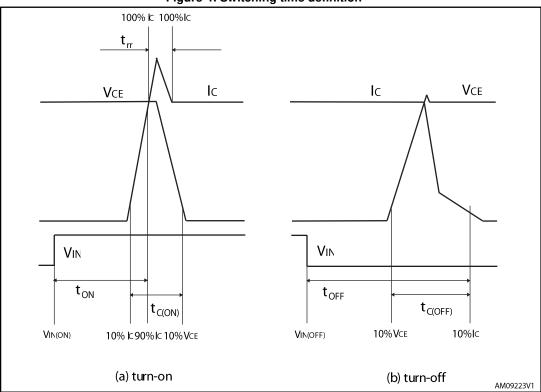



Figure 4: Switching time definition⁽¹⁾

Notes:

⁽¹⁾*Figure 4: "Switching time definition"* refers to HIN, LIN inputs (active high).

DocID024132 Rev 4

3.2 Control part

Table 9: Low voltage power supply (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_hys}	Vcc UV hysteresis		1.2	1.5	1.8	V
V _{CC_thON}	V _{CC} UV turn ON threshold		11.5	12	12.5	V
Vcc_thOFF	Vcc UV turn OFF threshold		10	10.5	11	V
I _{qccu}	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V}, \text{ SD } /OD = 5 \text{ V}, \text{ LIN } = 0,$ $H_{IN} = 0, \text{ C}_{IN} = 0$			150	μΑ
Iqcc	Quiescent current	$V_{cc} = 15 \text{ V}, \text{ SD } /\text{OD} = 5 \text{ V}, \text{ LIN} = 0,$ $H_{IN} = 0, \text{ C}_{IN} = 0$			1	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	v

Table 10: Bootstrapped voltage (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
V_{BS_thON}	VBS UV turn ON threshold		11.1	11.5	12.1	V
$V_{\text{BS_thOFF}}$	V_{BS} UV turn OFF threshold		9.8	10	10.6	V
IQBSU	Undervoltage V _{BS} quiescent current	$V_{BS} < 9 \text{ V}, \text{ SD } /OD = 5 \text{ V}, \text{ LIN } = 0,$ $HIN=5 \text{ V}, C_{IN} = 0$		70	110	μA
I _{QBS}	V _{BS} quiescent current	$V_{BS} = 15 \text{ V}, \overline{\text{SD}} / \text{OD} = 5 \text{ V}, \text{LIN} = 0,$ HIN=5 V, C _{IN} = 0		150	210	μA
R _{DS(on)}	Bootstrap driver on- resistance	LVG ON		120		Ω

STGIPN3H60-H

Electrical characteristics

	Table 11: Logic inputs (V _{cc} = 15 V unless otherwise specified)					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vil	Low logic level voltage				0.8	V
Vih	High logic level voltage		2.25			V
HINN	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μA
Ihini	HIN logic "0" input bias current	HIN = 0 V			1	μA
ILINh	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μA
I _{LINI}	LIN logic "0" input bias current	LIN = 0 V			1	μA
ISDh	SD logic "0" input bias current	SD = 15 V	30	120	300	μA
I _{SDI}	SD logic "1" input bias current	$\overline{SD} = 0 V$			3	μA
Dt	Dead time	see Figure 5: "Dead time and interlocking waveform definitions"		180		ns

Table 12: OPAMP characteristics (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vio	Input offset voltage	$V_{ic} = 0 V, V_o = 7.5 V$			6	mV
l _{io}	Input offset current	$V_{ic} = 0 V. V_0 = 7.5 V$		4	40	nA
l _{ib}	Input bias current (1)	$v_{ic} = 0 v, v_0 = 7.5 v$		100	200	nA
Vicm	Input common mode voltage range		0			V
Vol	Low level output voltage	R_L = 10 k Ω to V _{CC}		75	150	mV
V _{OH}	High level output voltage	R_L = 10 k Ω to GND	14	14.7		V
	I _o Output short-circuit current	Source, $V_{id} = + 1 V$; $V_o = 0 V$	16	30		mA
I ₀		Sink, V _{id} = -1 V; V _o = V _{CC}	50	80		mA
SR	Slew rate	$V_i = 1 - 4 V$; $C_L = 100 pF$; unity gain	2.5	3.8		V/µs
GBWP	Gain bandwidth product	V _o = 7.5 V	8	12		MHz
A _{vd}	Large signal voltage gain	R _L = 2 kΩ	70	85		dB
SVR	Supply voltage rejection ratio	vs. V _{CC}	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

Notes:

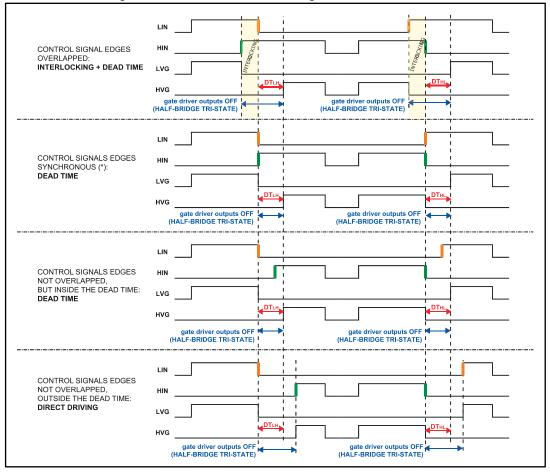
 $^{(1)}\mbox{The}$ direction of input current is out of the IC.

Electrical characteristics

STGIPN3H60-H

	Table 13: Sense comparator characteristics (V_{CC} = 15 V unless otherwise specified)						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
l _{ib}	Input bias current	V _{CIN} = 1 V			3	μA	
Vol	Open drain low level output voltage	$I_{od} = 3 \text{ mA}$			0.5	V	
td_comp	Comparator delay	$\overline{\text{SD}}$ /OD pulled to 5 V through 100 k Ω resistor		90	130	ns	
SR	Slew rate	C _L = 180 pF; R _{pu} = 5 kΩ		60		V/µsec	
t _{sd}	Shutdown to high / low side driver propagation delay	$\label{eq:Vour} \begin{array}{l} V_{\text{OUT}}=0, \ V_{\text{boot}}=V_{\text{CC}}, \ V_{\text{IN}}=0 \ to \\ 3.3 \ V \end{array}$	50	125	200	20	
tisd	Comparator triggering to high / low side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	ns	

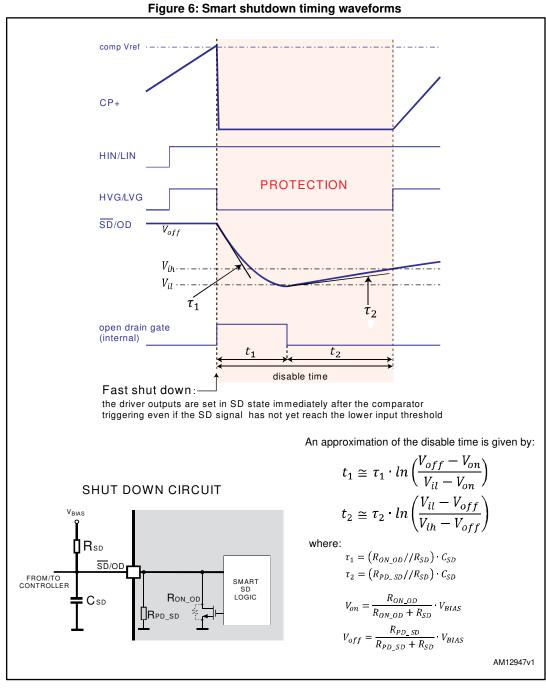
Table 14: Truth table


	Logic input (V _I)				tput
Condition	SD /OD	LIN	HIN	LVG	HVG
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L
Interlocking half-bridge tri-state	Н	Н	Н	L	L
0 "logic state" half-bridge tri-state	Н	L	L	L	L
1 "logic state" low side direct driving	Н	Н	L	Н	L
1 "logic state" high side direct driving	Н	L	Н	L	Н

Notes:

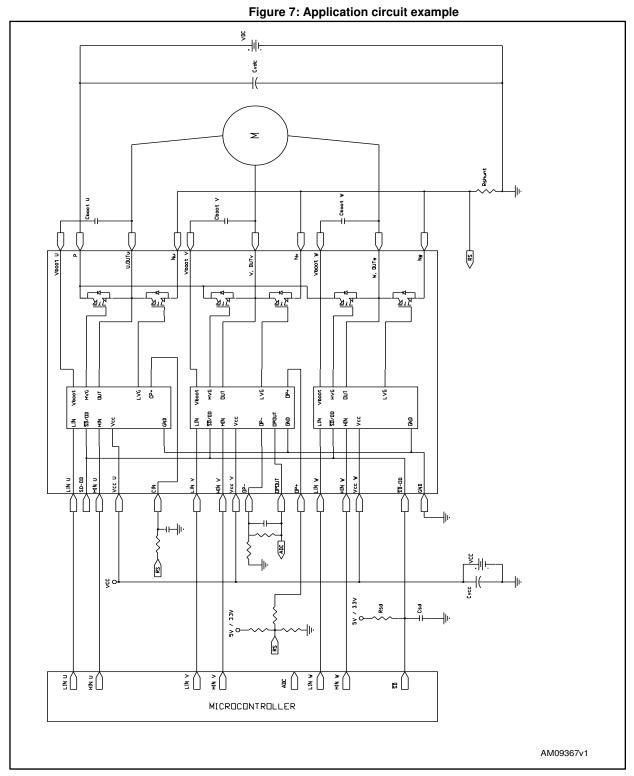
⁽¹⁾X: don't care.

3.3 Waveform definitions



4 Smart shutdown function

The STGIPN3H60-H integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{REF} connected to the inverting input, while the noninverting input, available on pin (CIN), can be connected to an external shunt resistor in order to implement a simple over-current protection function. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in tri-state. In the common overcurrent protection architectures the comparator output is usually connected to the shutdown input through a RC network, in order to provide a mono-stable circuit, which implements a protection time that follows the fault condition. Our smart shutdown architecture allows to immediately turn-off the output gate driver in case of overcurrent, the fault signal has a preferential path which directly switches off the outputs. The time delay between the fault and the outputs turn-off is no more dependent on the RC values of the external network connected to the shutdown pin. At the same time the DMOS connected to the open-drain output is turned on by the internal logic which holds it on until the shutdown voltage is lower than the logic input lower threshold (Vii). Finally, the smart shutdown function provides the possibility to increase the real disable time without increasing the constant time of the external RC network.



Please refer to *Table 13: "Sense comparator characteristics (VCC = 15 V unless otherwise specified)"* for internal propagation delay time details.

5 Application circuit example

Application designers are free to use a different scheme according with the specifications of the device.

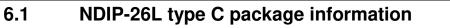
DocID024132 Rev 4

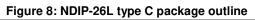
5.1 Guidelines

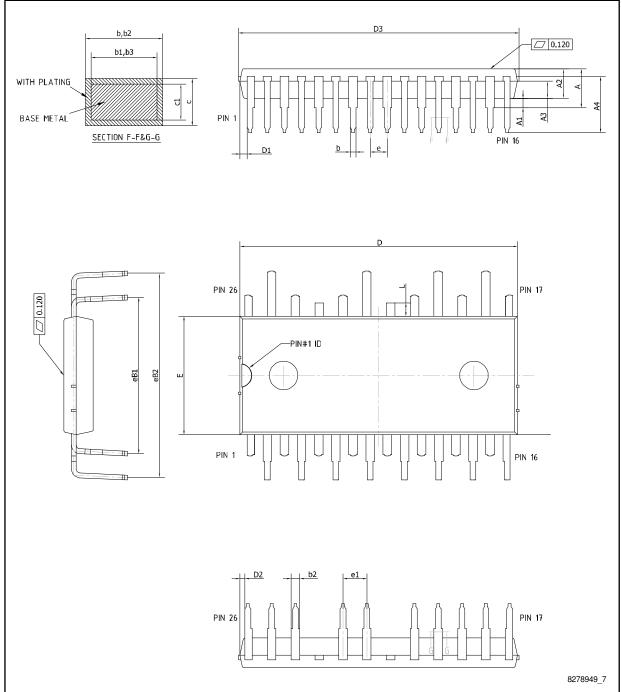
- Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull down resistor is builtin for each input. If an external RC filter is used, for noise immunity, pay attention to the variation of the input signal level.
- To prevent input signal oscillation, the wiring of each input should be as short as possible.
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-coupler is possible.
- Each capacitor should be located as close as possible to the pins of the IPM.
- Low inductance shunt resistors should be used for phase leg current sensing.
- Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible. Additional high frequency ceramic capacitors mounted close to the module pins will further improve performance.
- The SD /OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see *Section 4: "Smart shutdown function"* for detailed info).

These guidelines are useful for application design to ensure the specifications of the device. For further details, please refer to the relevant application note AN4043.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{PN}	Supply voltage	Applied between P-Nu, Nv, Nw		300	500	V
Vcc	Control supply voltage	Applied between Vcc-GND	13.5	15	18	V
V _{BS}	High side bias voltage	Applied between V_{BOOTi} -OUTi for i = U, V, W	13		18	V
t _{dead}	Blanking time to prevent Arm-short	For each input signal	1.5			μs
fрwм	PWM input signal	-40°C < T _c < 100 °C -40°C < T _j < 125 °C			25	kHz
Tc	Case operation temperature				100	°C


Table 15: Recommended operating conditions




6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package information

STGIPN3H60-H

formation STGIPN3H60-H					
Table 16: NDIP-26L type C mechanical data					
Dim.	mm				
Dim.	Min.	Тур.	Max.		
A			4.40		
A1	0.80	1.00	1.20		
A2	3.00	3.10	3.20		
A3	1.70	1.80	1.90		
A4	5.70	5.90	6.10		
b	0.53		0.72		
b1	0.52	0.60	0.68		
b2	0.83		1.02		
b3	0.82	0.90	0.98		
С	0.46		0.59		
c1	0.45	0.50	0.55		
D	29.05	29.15	29.25		
D1	0.50	0.77	1.00		
D2	0.35	0.53	0.70		
D3			29.55		
E	12.35	12.45	12.55		
е	1.70	1.80	1.90		
e1	2.40	2.50	2.60		
eB1	16.10	16.40	16.70		
eB2	21.18	21.48	21.78		
L	1.24	1.39	1.54		

6.2 NDIP-26L packing information

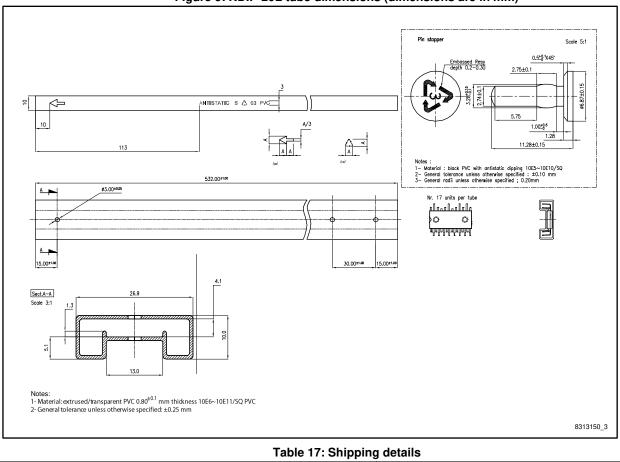


Figure 9: NDIP-26L tube dimensions (dimensions are in mm)

Table 17: Shipping details		
Parameter	Value	
Base quantity	17 pcs	
Bulk quantity	476 pcs	

7 Revision history

Table 18: Document revision history

Date	Revision	Changes
15-Jan-2013	1	Initial release.
02-May-2013	2	Modified: Figure 3 on page 8, Section 4 on page 14 and Figure 6 on page 15.
14-Mar-2014	3	Updated Figure 3: Switching time test circuit, Table 9: Bootstrapped voltage (VCC = 15 V unless otherwise specified) and Table 10: Logic inputs (VCC = 15 V unless otherwise specified). Updated Section 6: Package mechanical data.
08-Sep-2016	4	Updated Section 6.1: "NDIP-26L type C package information" and Section 6.2: "NDIP-26L packing information" Minor text changes

STGIPN3H60-H

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

