

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

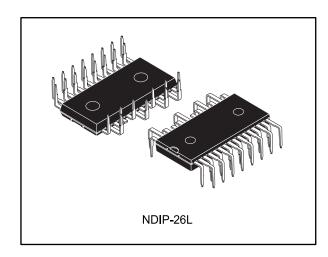
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STGIPN3H60

SLLIMM™-nano small low-loss intelligent molded module IPM, 3 A, 600 V, 3-phase IGBT inverter bridge

Datasheet - production data

Features

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes
- Optimized for low electromagnetic interference
- V_{CE(sat)} negative temperature coefficient
- 3.3 V, 5 V, 15 V CMOS/TTL input comparators with hysteresis and pulldown/pull-up resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Smart shutdown function
- Comparator for fault protection against overtemperature and overcurrent
- Op-amp for advanced current sensing
- Optimized pinout for easy board layout

Applications

- 3-phase inverters for motor drives
- Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

Description

This SLLIMM (small low-loss intelligent molded module) nano provides a compact, high performance AC motor drive in a simple, rugged design. It is composed of six MOSFETs and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is optimized for thermal performance and compactness in built-in motor applications, or other low power applications where assembly space is limited. This IPM includes an operational amplifier, completely uncommitted, and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM™ is a trademark of STMicroelectronics.

Table 1: Device summary

Order code	Marking	Package	Packing
STGIPN3H60	GIPN3H60	NDIP-26L	Tube

March 2017 DocID018957 Rev 7 1/23

Contents

Internal	schematic diagram and pin configuration	3
2.1	Absolute maximum ratings	6
2.2	Thermal data	7
Electric	al characteristics	8
3.1	Inverter part	8
3.2	Control part	10
3.3	Waveform definitions	13
Smart s	shutdown function	14
Applica	tion circuit example	16
5.1	-	
Packag	e information	18
6.1	NDIP-26L type C package information	19
6.2		
Revisio	n history	22
	2.1 2.2 Electric 3.1 3.2 3.3 Smart s Applica 5.1 Packag 6.1 6.2	2.2 Thermal data Electrical characteristics 3.1 Inverter part 3.2 Control part 3.3 Waveform definitions Smart shutdown function Application circuit example 5.1 Guidelines Package information

1 Internal schematic diagram and pin configuration

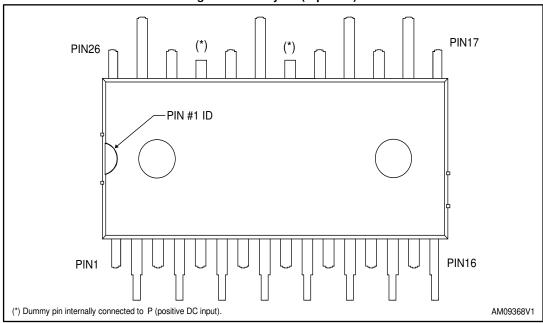

PIN 1 PIN 26 GND GND SD-OD HVG Vcc W VCC W, OUT W OUT LVG HIN W HIN SD-OD VBOOT LIN W LIN Vboot W OP+ GND OP+ OPOUT OPOUT Πνν OP-OP-HVG V, OUT V VCC OUT Vcc V LVG HIN V SD-OD VBOOT <u>∐N</u> ∨ LIN Vboot V CIN GND CIN NU HVG ___ U,OUT U Vcc U VCC OUT LVG HIN U HIN SD-OD SD-OD VBOOT LIN U LIN Vboot U **PIN 16 PIN 17** AM09916v1

Figure 1: Internal schematic diagram

Table 2: Pin description

Pin	Symbol	Description
1	GND	Ground
2	SD /OD	Shutdown logic input (active low) / open-drain (comparator output)
3	Vcc W	Low voltage power supply W phase
4	HIN W	High-side logic input for W phase
5	LIN W	Low-side logic input for W phase
6	OP+	Op-amp non inverting input
7	OP _{OUT}	Op-amp output
8	OP-	Op-amp inverting input
9	Vcc V	Low voltage power supply V phase
10	HIN V	High-side logic input for V phase
11	LIN V	Low-side logic input for V phase
12	CIN	Comparator input
13	Vcc U	Low voltage power supply for U phase
14	HIN U	High-side logic input for U phase
15	SD /OD	Shutdown logic input (active low) / open-drain (comparator output)
16	LIN U	Low-side logic input for U phase
17	V _{BOOT} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U,OUT_U	U phase output
20	Nυ	Negative DC input for U phase
21	V_{BOOT} V	Bootstrap voltage for V phase
22	V , OUT_V	V phase output
23	N _V	Negative DC input for V phase
24	V _{BOOT} W	Bootstrap voltage for W phase
25	W, OUTw	W phase output
26	Nw	Negative DC input for W phase

Figure 2: Pin layout (top view)

Electrical ratings STGIPN3H60

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3: Inverter part

Symbol	Parameter	Value	Unit
Vces	Each IGBT collector emitter voltage (V _{IN} ⁽¹⁾ = 0)	600	V
± Ic ⁽²⁾	Each IGBT continuous collector current at T _C = 25 °C	3	Α
± I _{CP} (3)	Each IGBT pulsed collector current	18	Α
Ртот	Each IGBT total dissipation at Tc = 25 °C	8	W

Notes:

⁽¹⁾Applied among HIN_i, \overline{LIN} i and G_{ND} for i = U, V, W.

⁽²⁾Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

⁽³⁾Pulse width limited by max. junction temperature.

Table 4: Control part

Symbol	Parameter	Min.	Max.	Unit
Vout	Output voltage applied among OUT _U , OUT _V , OUT _W - GND	V _{boot} - 21	V _{boot} + 0.3	V
Vcc	Low voltage power supply	- 0.3	21	V
V_{CIN}	Comparator input voltage	- 0.3	$V_{CC} + 0.3$	V
V_{op+}	Op-amp non-inverting input	- 0.3	V _{CC} + 0.3	V
V _{op} -	Op-amp inverting input	- 0.3	V _{CC} + 0.3	V
V_{boot}	Bootstrap voltage	- 0.3	620	V
V _{IN}	Logic input voltage applied among HIN, LIN and GND	- 0.3	15	V
$V_{\overline{SD}/OD}$	Open-drain voltage	- 0.3	15	V
$\Delta V_{\text{OUT/dT}}$	Allowed output slew rate		50	V/ns

Table 5: Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied among each pin and heatsink plate (AC voltage, t = 60 s)	1000	V
Tj	Power chip operating junction temperature range	-40 to 150	°C
T _C	Module operation case temperature range	-40 to 125	°C

STGIPN3H60 Electrical ratings

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Value	Unit
RthJA	Thermal resistance junction-ambient	50	°C/W

Electrical characteristics STGIPN3H60

3 Electrical characteristics

3.1 Inverter part

 $T_J = 25~^{\circ}\text{C}$ unless otherwise specified.

Table 7: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V},$ $V_{IN}^{(1)} = 0 \text{ to 5 V}, I_{C} = 1 \text{ A}$	ı	2.15	2.6	
		$V_{CC} = V_{boot} = 15 \text{ V},$ $V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V}, I_C = 1 \text{ A},$ $T_J = 125 ^{\circ}\text{C}$	1	1.65		V
Ices	Collector cut-off current $(V_{IN}^{(1)} = 0 \text{ "logic state"})$	V _{CE} = 550 V, V _{CC} = V _{Boot} = 15 V	1		250	μΑ
VF	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 1 A$	-		1.7	V

Notes:

Table 8: Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ton ⁽¹⁾	Turn-on time		ı	275	1	
t _{c(on)} (1)	Crossover time (on)	$V_{DD} = 300 \text{ V},$	-	90	-	
t _{off} (1)	Turn-off time	$V_{CC} = V_{boot} = 15 \text{ V},$	-	890	-	ns
tc(off) ⁽¹⁾	Crossover time (off)	$V_{IN}^{(2)} = 0 - 5 V,$	-	125	-	
t _{rr}	Reverse recovery time	Ic = 1 A (see Figure 4: "Switching time	-	50	-	
Eon	Turn-on switching energy	definition")	1	18	-	1
E _{off}	Turn-off switching energy		-	13	-	μJ

Notes:

⁽¹⁾Applied among HIN_i, \overline{LIN} i and G_{ND} for i = U, V, W (\overline{LIN} inputs are active low).

 $^{^{(1)}}$ ton and toff include the propagation delay time of the internal drive. $tc_{(ON)}$ and $tc_{(OFF)}$ are the switching time of MOSFET itself under the internally given gate driving conditions.

⁽²⁾Applied among HIN_i, \overline{LIN} i and G_{ND} for i = U, V, W (\overline{LIN} inputs are active low).

Figure 3: Switching time test circuit

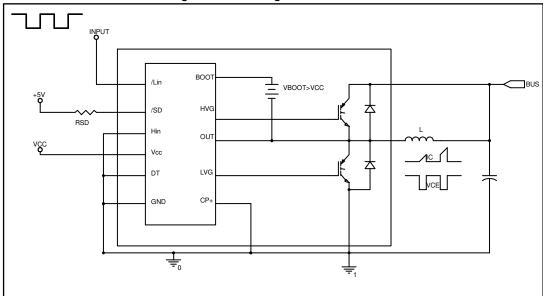


Figure 4: Switching time definition

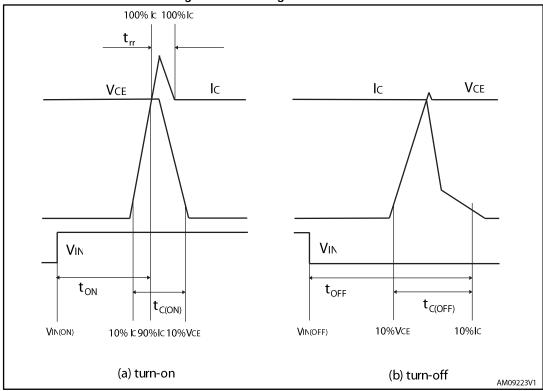


Figure 4: "Switching time definition" refers to HIN inputs (active high). For LIN inputs (active low), VIN polarity must be inverted for turn-on and turn-off.

3.2 Control part

Table 9: Low voltage power supply (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_hys}	V _{CC} UV hysteresis		1.2	1.5	1.8	V
V _{CC_thON}	V _{CC} UV turn-ON threshold		11.5	12	12.5	V
V _{CC_thOFF}	V _{CC} UV turn-OFF threshold		10	10.5	11	V
I _{qccu}	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V}, \overline{\text{SD}} / \text{OD} = 5 \text{ V},$ $\overline{\text{LIN}} = 5 \text{ V}, H_{IN} = 0, C_{IN} = 0 \text{ V}$			150	μΑ
I _{qcc}	Quiescent current	$V_{cc} = 15 \text{ V}, \overline{\text{SD}} / \text{OD} = 5 \text{ V},$ $\overline{\text{LIN}} = 5 \text{ V}, H_{IN} = 0, C_{IN} = 0 \text{ V}$			1	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	V

Table 10: Bootstrapped voltage (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
V _{BS_thON}	V _{BS} UV turn-ON threshold		11.1	11.5	12.1	V
V _{BS_thOFF}	V _{BS} UV turn-OFF threshold		9.8	10	10.6	٧
Ідвѕи	Undervoltage V _{BS} quiescent current	$V_{BS} < 9 \text{ V}$ $\overline{SD} / OD = 5 \text{ V},$ $\overline{LIN} \text{ and HIN} = 5 \text{ V},$ $C_{IN} = 0 \text{ V}$		70	110	μΑ
IQBS	V _{BS} quiescent current	$V_{BS} = 15 \text{ V}$ $\overline{SD} / OD = 5 \text{ V},$ $\overline{LIN} \text{ and HIN} = 5 \text{ V},$ $C_{IN} = 0 \text{ V}$		200	300	μΑ
R _{DS(on)}	Bootstrap driver on-resistance	LVG ON		120		Ω

Table 11: Logic inputs (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vil	Low logic level voltage		8.0		1.1	V
V_{ih}	High logic level voltage		1.9		2.25	V
I _{HINh}	HIN logic "1" input bias current	HIN = 15 V	110	175	260	μΑ
Ihini	HIN logic "0" input bias current	HIN = 0 V			1	μΑ
ILINI	LIN logic "1" input bias current	LIN = 0 V	3	6	20	μΑ

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
ILINh	LIN logic "0" input bias current	LIN = 15 V			1	μΑ
I _{SDh}	SD logic "0" input bias	SD = 15 V	30	120	300	μΑ
I _{SDI}	SD logic "1" input bias current	SD = 0 V			3	μΑ
Dt	Dead time	see Figure 5: "Dead time and interlocking waveform definitions"		180		ns

Table 12: Op-amp characteristics (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vio	Input offset voltage	V _{ic} = 0 V, V _o = 7.5 V			6	mV
l _{io}	Input offset current	V. 0VV 75V		4	40	nA
l _{ib}	Input bias current (1)	$V_{ic} = 0 \text{ V}, V_o = 7.5 \text{ V}$		100	200	nA
Vicm	Input common mode voltage range		0			٧
V _{OL}	Low level output voltage	R_L = 10 k Ω to V_{CC}		75	150	mV
Vон	High level output voltage	R_L = 10 kΩ to GND	14	14.7		٧
	Output short-circuit current	Source, $V_{id} = + 1 V$; $V_o = 0 V$	16	30		mA
lo		Sink, V _{id} = -1 V; V _o = V _{CC}	50	80		mA
SR	Slew rate	$V_i = 1 - 4 \text{ V}; C_L = 100 \text{ pF};$ unity gain	2.5	3.8		V/µs
GBWP	Gain bandwidth product	$V_0 = 7.5 \text{ V}$	8	12		MHz
A _{vd}	Large signal voltage gain	R _L = 2 kΩ	70	85		dB
SVR	Supply voltage rejection ratio	vs. V _{CC}	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

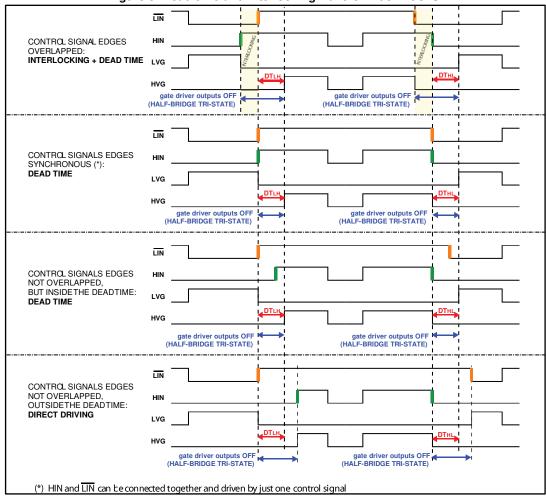
Notes:

 $[\]ensuremath{^{(1)}}\mbox{The direction of the input current is out of the IC.}$

Table 13: Sense comparator characteristics (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
l _{ib}	Input bias current	V _{CIN} = 1 V			3	μΑ
Vol	Open-drain low level output voltage I _{od} = 3 mA				0.5	٧
t _{d_comp}	Comparator delay	SD /OD pulled to 5 V through 100 kΩ resistor		90	130	ns
SR	Slew rate	$C_L = 180 \text{ pF}; R_{pu} = 5 \text{ k}\Omega$		60		V/µs
t _{sd}	Shutdown to high / low-side driver propagation delay	$\begin{aligned} V_{\text{OUT}} &= 0, \ V_{\text{boot}} = V_{\text{CC}}, \\ V_{\text{IN}} &= 0 \ \text{to} \ 3.3 \ V \end{aligned}$	50	125	200	
tisd	Comparator triggering to high / low-side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	ns

Table 14: Truth table


	Lo	Output			
Condition	SD /OD	LIN	HIN	LVG	HVG
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L
Interlocking half-bridge tri-state	Н	L	Н	L	L
0 "logic state" half-bridge tri-state	Н	Н	L	L	L
1 "logic state" low-side direct driving	Н	L	L	Н	L
1 "logic state" high-side direct driving	Н	Н	Н	L	Н

Notes:

(1)X: don't care.

3.3 Waveform definitions

Figure 5: Dead time and interlocking waveform definitions

Smart shutdown function STGIPN3H60

4 Smart shutdown function

The STGIPN3H60 integrates a comparator for fault sensing purposes. The comparator non-inverting input (C_{IN}) can be connected to an external shunt resistor so to implement a simple overcurrent protection function. When the comparator triggers, the device is set in shutdown state and both of its outputs are set to low level to lead the half-bridge to tri-state. In common overcurrent protection architectures, the comparator output is usually connected to the shutdown input through an RC network, to provide a mono-stable circuit, which implements a protection time following to the fault condition. Our smart shutdown architecture allows the output gate driver to immediately turn off in case of overcurrent, the fault signal has a preferential path, which directly switches off the outputs. The time delay between the fault and the output turn-off is no more dependent on the RC values of the external network connected to the shutdown pin. At the same time, the internal logic turns on the open-drain output and holds it on until the shutdown voltage goes below the logic input threshold. Finally the smart shutdown function increases the real disable time without increasing the constant time of the external RC network.

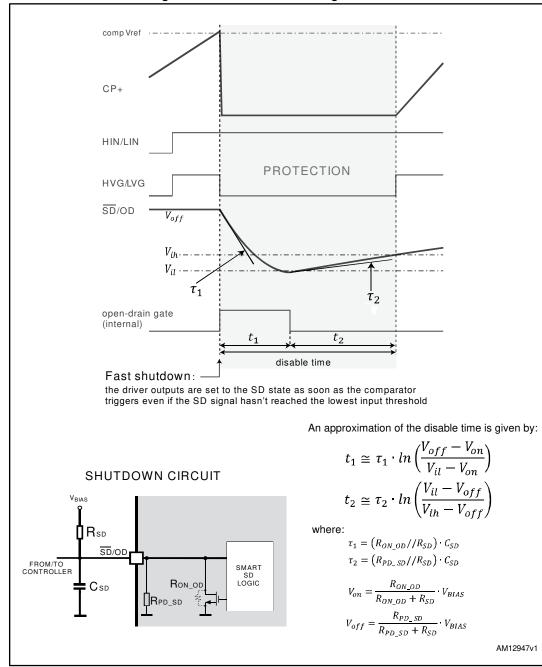
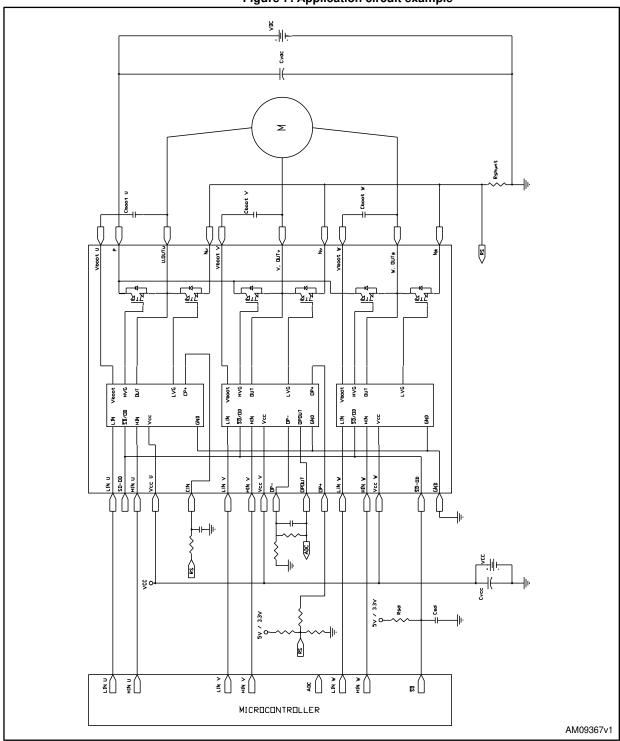



Figure 6: Smart shutdown timing waveforms

Please refer to Table 13: "Sense comparator characteristics (VCC = 15 V unless otherwise specified)" for internal propagation delay time details.

5 Application circuit example

Figure 7: Application circuit example

Application designers are free to use a different scheme according to the specifications of the device.

577

5.1 Guidelines

- Input signal HIN is active high logic. A pull-down resistor of 85 k Ω (typ.) is built-in for each high-side input. If an external RC filter is used for noise immunity, attention should be given to the variation of the input signal level.
- Input signal LIN is active low logic. A 720 kΩ (typ.) pull-up resistor, connected to an internal 5 V regulator through a diode, is built-in for each low-side input.
- To avoid input signal oscillation, the wiring of each input should be as short as possible.
- By integrating an application specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible.
- Each capacitor should be located as close as possible to pins of IPM.
- Low inductance shunt resistors should be used for phase leg current sensing.

further details, please refer to the relevant application note AN4043.

- Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible. Additional high frequency ceramic capacitors mounted close to the module pins improve the performance.
- The SD /OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see Section 4: "Smart shutdown function" for detailed info). These guidelines ensure the specifications of the device for application designs. For

Table 15: Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply voltage	Applied among P-Nu, Nv, Nw		300	500	٧
Vcc	Control supply voltage	Applied to Vcc-GND	13.5	15	18	٧
V _{BS}	High-side bias voltage	Applied to V_{BOOTi} -OUT _i for i = U, V, W	13		18	>
t _{dead}	Blanking time to avoid arm- short	For each input signal	1.5			μs
f _{PWM}	PWM input signal	-40 °C < T _c < 100 °C -40 °C < T _j < 125 °C			25	kHz
Tc	Case operation temperature				100	°C

Package information STGIPN3H60

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STGIPN3H60 Package information

6.1 NDIP-26L type C package information

Figure 8: NDIP-26L type C package outline

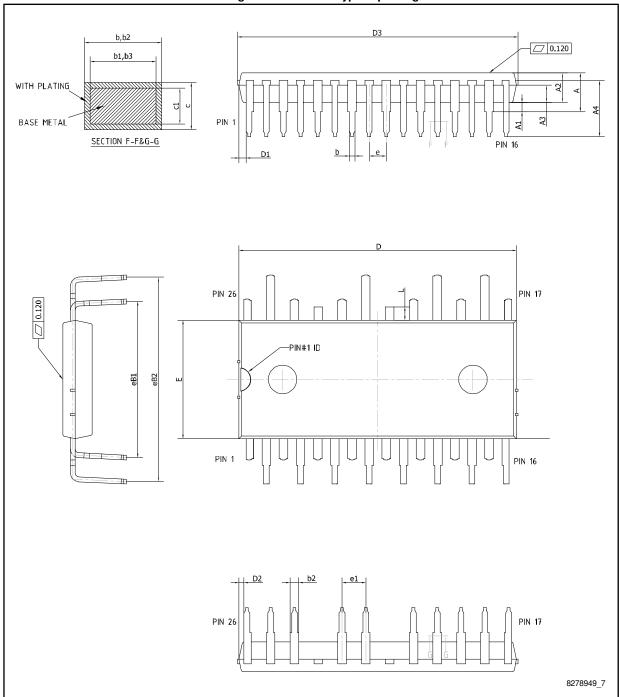


Table 16: NDIP-26L type C mechanical data

Table 16: NDIP-26L type C mechanical data					
Dim.		mm			
Dilli.	Min.	Тур.	Max.		
Α			4.40		
A1	0.80	1.00	1.20		
A2	3.00	3.10	3.20		
A3	1.70	1.80	1.90		
A4	5.70	5.90	6.10		
b	0.53		0.72		
b1	0.52	0.60	0.68		
b2	0.83		1.02		
b3	0.82	0.90	0.98		
С	0.46		0.59		
c1	0.45	0.50	0.55		
D	29.05	29.15	29.25		
D1	0.50	0.77	1.00		
D2	0.35	0.53	0.70		
D3			29.55		
Е	12.35	12.45	12.55		
е	1.70	1.80	1.90		
e1	2.40	2.50	2.60		
eB1	16.10	16.40	16.70		
eB2	21.18	21.48	21.78		
L	1.24	1.39	1.54		

STGIPN3H60 Package information

6.2 NDIP-26L packing information

Figure 9: NDIP-26L tube (dimensions are in mm)

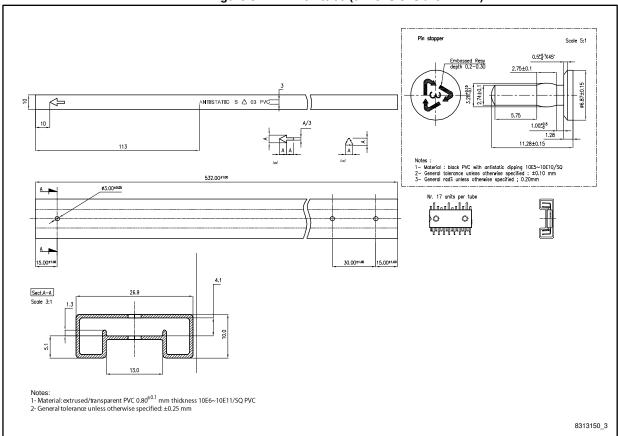


Table 17: Shipping details

Parameter	Value
Base quantity	17 pieces
Bulk quantity	476 pieces

Revision history STGIPN3H60

7 Revision history

Table 18: Document revision history

Date	Revision	Changes
23-Jun-2011	1	Initial release.
23-Dec-2011	2	Document status promoted from preliminary data to datasheet. Added Figure 9 on page 20.
03-Jul-2012	3	Modified: Min. and Max. value <i>Table 4 on page 6</i> . Added: <i>Table 14 on page 17</i> .
14-Mar-2014	4	Updated Figure 3: Switching time test circuit, Figure 6: Smart shutdown timing waveforms. Updated Table 9: Bootstrapped voltage (VCC = 15 V unless otherwise specified), Table 10: Logic inputs (VCC = 15 V unless otherwise specified). Updated Section 6: Package mechanical data.
28-Aug-2014	5	Updated unit in Table 9: Bootstrapped voltage (VCC = 15 V unless otherwise specified)
12-Nov-2014	6	Updated unit for Slew rate parameter in <i>Table 11.: OPAMP</i> characteristics (VCC = 15 V unless otherwise specified) Updated 6: Package mechanical data.
16-Mar-2017	7	Updated Section 6.1: "NDIP-26L type C package information" and Section 6.2: "NDIP-26L packing information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

