

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

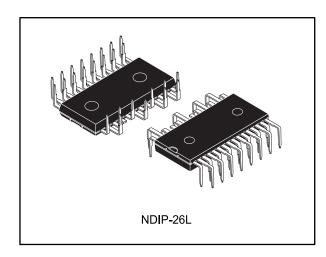
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



life.augmented

STGIPN3H60AT

SLLIMM™-nano small low-loss intelligent molded module IPM, 3 A, 600 V, 3-phase IGBT inverter bridge

Datasheet - production data

Features

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes
- Optimized for low electromagnetic interference
- V_{CE(sat)} negative temperature coefficient
- 3.3 V, 5 V, 15 V CMOS/TTL inputs comparators with hysteresis and pull-down resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Optimized pinout for easy board layout
- $85 \text{ k}\Omega$ NTC for temperature control (UL1434 CA 2 and 4)

Applications

- 3-phase inverters for motor drives
- Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

Description

This intelligent power module implements a compact, high performance AC motor drive in a simple, rugged design. It is composed of six IGBTs with freewheeling diodes and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is optimized for thermal performance and compactness in built-in motor applications, or other low power applications where assembly space is limited. This IPM includes an operational amplifier, completely uncommitted, and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM™ is a trademark of STMicroelectronics.

Table 1: Device summary

Order code		Marking	Package	Packing
	STGIPN3H60AT	GIPN3H60AT	NDIP-26L	Tube

Contents STGIPN3H60AT

Contents

1	Internal	l schematic diagram and pin configuration	3
2		eal ratings	
	2.1		
	2.2	Thermal data	6
3	Electric	eal characteristics	7
	3.1	Inverter part	7
	3.2	Control part	9
		3.2.1 NTC thermistor	10
4	Applica	tion circuit example	12
	4.1	Guidelines	13
5	Packag	e information	14
	5.1	NDIP-26L type C package information	15
	5.2		
6	Revisio	n history	18

1 Internal schematic diagram and pin configuration

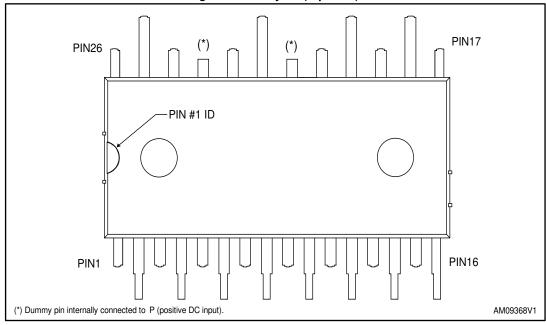

GND (1) __ NW (26) T (2) W, OUT W (25) GND Vcc W (3) Vboot W (24) vcc HIN W (4) HIN LIN W (5) LIN NTC T (6) N V (23) NC (7) GND V, OUT V (22) HVG NC (8) OUT vcc Vcc V (9) HIN LIN HIN V (10) Vboot V (21) LIN V (11) N U (20) GND NC (12) Vcc U (13) U, OUT U (19) vcc HIN HIN U (14) P (18) LIN T (15) LIN U (16) Vboot U (17)

Figure 1: Internal schematic diagram

Table 2: Pin description

Pin	Symbol	Description
1	GND	Ground
2	Т	NTC thermistor terminal
3	V _{CC} W	Low voltage power supply W phase
4	HIN W	High side logic input for W phase
5	LIN W	Low side logic input for W phase
6	Т	NTC thermistor terminal
7	NC	Not connected
8	NC	Not connected
9	V _{CC} V	Low voltage power supply V phase
10	HIN V	High side logic input for V phase
11	LIN V	Low side logic input for V phase
12	NC	Not connected
13	Vcc U	Low voltage power supply for U phase
14	HIN U	High side logic input for U phase
15	Т	NTC thermistor terminal
16	LIN U	Low side logic input for U phase
17	V _{BOOT} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U	U phase output
20	Nυ	Negative DC input for U phase
21	V _{BOOT} V	Bootstrap voltage for V phase
22	V	V phase output
23	Nv	Negative DC input for V phase
24	V _{BOOT} W	Bootstrap voltage for W phase
25	W	W phase output
26	Nw	Negative DC input for W phase

Figure 2: Pin layout (top view)

Electrical ratings STGIPN3H60AT

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3: Inverter part

Symbol	Parameter	Value	Unit
Vces	Each IGBT collector emitter voltage (V _{IN} ⁽¹⁾ = 0)	600	V
± Ic ⁽²⁾	Each IGBT continuous collector current at T _C = 25°C	3	Α
± I _{CP} (3)	Each IGBT pulsed collector current	18	Α
Ртот	Each IGBT total dissipation at T _C = 25°C	8	W

Notes:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} * V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

Table 4: Control part

Symbol	Parameter	Min.	Max.	Unit
Vоит	Output voltage applied between OUT_U , OUT_V , OUT_W - GND	V _{boot} - 18	V _{boot} + 0.3	٧
Vcc	Low voltage power supply	- 0.3	18	V
V_{boot}	Bootstrap voltage	- 0.3	618	٧
V _{IN}	Logic input voltage applied between HINi, LINi and G_{ND} for $i=U,V,W$	- 0.3	V _{CC} + 0.3	>
$\Delta V_{\text{OUT/dT}}$	Allowed output slew rate		50	V/ns

Table 5: Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, $t=60\ s.$)	1000	>
Tj	Power chips operating junction temperature range	-40 to 150	°C
Tc	Module operation case temperature range	-40 to 125	°C

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Value	Unit
R_{thJA}	Thermal resistance junction-ambient	50	°C/W

 $[\]ensuremath{^{(1)}}\mbox{Applied}$ between HINi, LINi and G_{ND} for i = U, V, W.

⁽²⁾Calculated according to the iterative formula:

⁽³⁾Pulse width limited by max junction temperature.

3 Electrical characteristics

3.1 Inverter part

 $T_J = 25~^{\circ}\text{C}$ unless otherwise specified.

Table 7: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	V _{CE(sat)} Collector-emitter saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, \ V_{IN}^{(1)} = 0 \text{ to 5 V}, \ I_C = 1 \text{ A}$	1	2.15	2.6	
V _{CE(sat)}		$V_{CC} = V_{boot} = 15 \text{ V}, \ V_{IN}{}^{(1)} = 0 \text{ to 5 V}, \ I_C = 1 \text{ A}, \\ T_J = 125 \ ^{\circ}C$	1	1.65		٧
Ices	Collector-cut off current $(V_{IN}^{(1)} = 0 \text{ "logic state"})$	V _{CE} = 550 V, V _{CC} = V _{Boot} = 15 V	1		250	μΑ
V _F	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 1 A$	-		1.7	٧

Notes:

Table 8: Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
ton ⁽¹⁾	Turn-on time		-	275	-		
t _{c(on)} (1)	Crossover time (on)	V _{DD} = 300 V,	Vpp - 300 V	1	90	-	
toff ⁽¹⁾	Turn-off time	$V_{CC} = V_{boot} = 15 \text{ V},$	1	890	-	ns	
t _{c(off)} (1)	Crossover time (off)	$V_{IN}^{(2)} = 0$ to 5 V, $I_C = 1$ A (see Figure 4: "Switching time definition")	-	125	-		
t _{rr}	Reverse recovery time		-	50	-		
Eon	Turn-on switching energy		-	18	-	1	
E _{off}	Turn-off switching energy		-	13	-	μJ	

Notes

 $[\]ensuremath{^{(1)}}\mbox{Applied}$ between HINi, LINi and G_{ND} for i = U, V, W (LIN inputs are active-low).

 $^{^{(1)}}$ toN and toFF include the propagation delay time of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the internally given gate driving condition.

 $^{^{(2)}}$ Applied between HINi, LINi and G_{ND} for i = U, V, W (LIN inputs are active-low).

Figure 3: Switching time test circuit

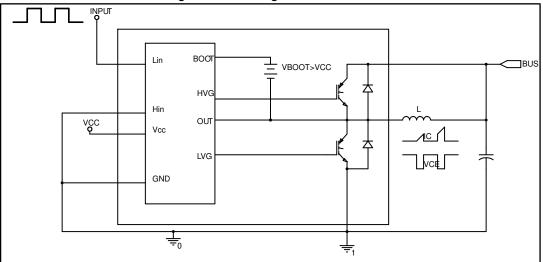
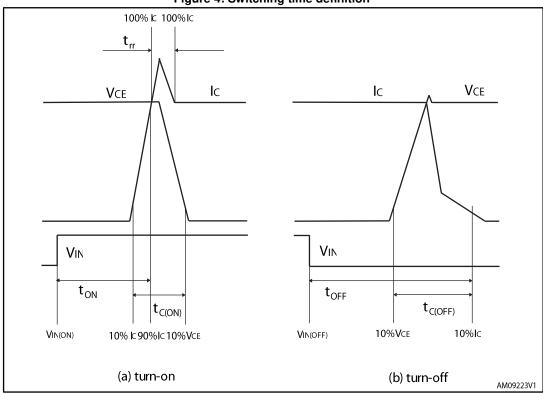



Figure 4: Switching time definition

3.2 Control part

Table 9: Low voltage power supply (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_thON}	Undervoltage turn-on threshold		9.1	9.6	10.1	٧
V _{CC_thOFF}	Undervoltage turn-off threshold		7.9	8.3	8.8	٧
V _{CC_hys}	Undervoltage hystereses		0.9			٧
I _{qccu}	Undervoltage quiescent supply current	Vcc < 7.9 V		250	330	μΑ
I _{qcc}	Quiescent current	Vcc = 15 V		350	450	μΑ

Table 10: Bootstrapped voltage (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{boot_thON}	Undervoltage turn-on threshold		8.5	9.5	10.5	V
V_{boot_thOFF}	Undervoltage turn-off threshold		7.2	8.3	9.2	V
V _{boothys}	Undervoltage hystereses		0.9			V
I _{qboot}	Quiescent current				250	μΑ
R _{DS(on)}	Bootstrap driver on-resistance	V _{CC} > 12.5 V		125		Ω

Table 11: Logic inputs (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vil	Low level logic input voltage				1.1	V
V_{ih}	High level logic input voltage		1.8			٧
lii	Low level logic input current (1)	$V_{IN} = 0 \ V^{(1)}$	-1			μΑ
lih	High level logic input current (1)	V _{IN} = 15 V ⁽¹⁾		20	70	μΑ
Dt	Dead time ⁽²⁾			320		ns

Notes:

 $^{^{(1)}}$ Applied between HIN_i, LIN_i and G_{ND} for $i=U,\,V,\,W$

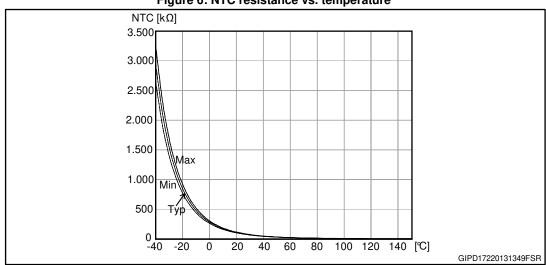
⁽²⁾See Figure 5: "Dead time and interlocking definition"

LIN
H IN
LVG
HVG

AM03794v1

Figure 5: Dead time and interlocking definition

3.2.1 NTC thermistor

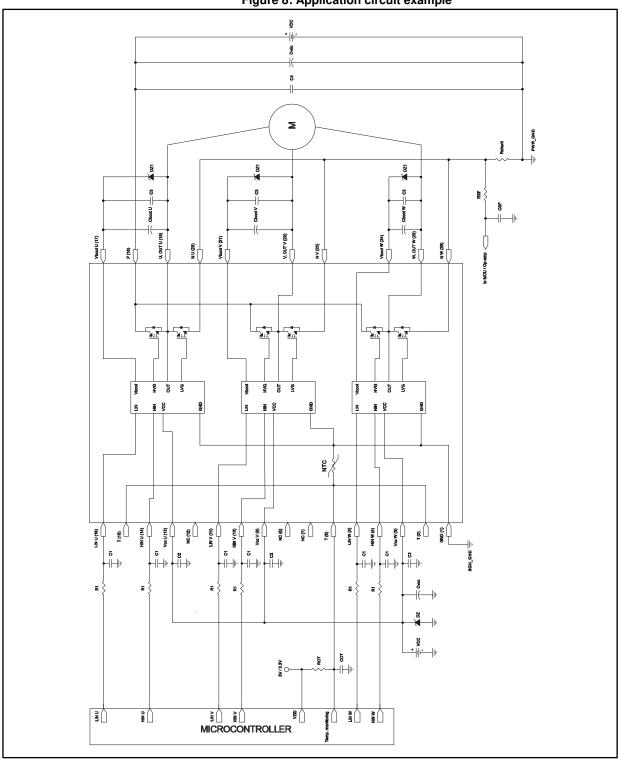

Table 12: NTC thermistor

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
R25	Resistance	T = 25 °C		85		kΩ
R100	Resistance	T = 100 °C		5388		Ω
В	B-constant	T = 25 °C to 100 °C		4092		K
Т	Operating temperature		-25		125	°C

$$R(T) = R_{25} \times e^{B\left(\frac{1}{T} - \frac{1}{298}\right)}$$

Where T are temperatures in Kelvins

Figure 6: NTC resistance vs. temperature



NTC [kΩ] 35 30 25 20 Max Min 15 10 5 0 50 70 90 110 130 150[℃] GIPD17220131350FSR

Figure 7: NTC resistance vs. temperature (zoom)

4 Application circuit example

Figure 8: Application circuit example

Application designers are free to use a different scheme according with the specifications of the device.

47/

4.1 Guidelines

- Input signals HIN, LIN are active-high logic. A 500 k Ω (typ.) pull-down resistor is built-in for each input. To prevent input signal oscillation, the wiring of each input should be as short as possible and the use of RC filters (R1, C1) on each input signal is suggested. The filters should be done with a time constant of about 100ns and must be placed as close as possible to the IPM input pins.
- The bypass capacitor Cvcc (aluminum or tantalum) is recommended to reduce the transient circuit demand on the power supply. In addition, a decoupling capacitor C2 (from 100 to 220 nF, ceramic with low ESR) is suggested, to reduce high frequency switching noise distributed on the power supply lines. It must be placed as close as possible to each Vcc pin and in parallel to the bypass capacitor.
- The use of RC filter (RSF, CSF) for current monitoring is recommended to improve noise immunity. The filter must be placed as close as possible to the microcontroller or to the Op-amp.
- The decoupling capacitor C3 (from 100 to 220 nF, ceramic with low ESR), in parallel to each C_{boot}, is recommended in order to filter high frequency disturbances.
- The Zener diodes DZ1 between the Vcc pins and GND and in parallel to each Cboot is suggested in order to prevent overvoltage.
- The decoupling capacitor C4 (from 100 to 220 nF, ceramic with low ESR) in parallel to the electrolytic capacitor Cvdc is recommended, in order to prevent surge destruction. Both capacitors C4 and Cvdc should be placed as close as possible to the IPM (C4 has priority over Cvdc).
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-coupler is possible.
- Low inductance shunt resistors should be used for phase leg current sensing.
- In order to avoid malfunctions, the wiring between N pins, the shunt resistor and PWR GND should be as short as possible.
- It is recommended to connect SGN_GND to PWR_GND at only one point (near the terminal of shunt resistor), in order to avoid any malfunction due to power ground fluctuation.

These guidelines are useful for application design to ensure the specifications of the device. For further details, please refer to the relevant application note AN4043.

Table 13: Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{PN}	Supply voltage	Applied between P-Nu, Nv, Nw		300	500	V
Vcc	Control supply voltage	Applied between Vcc-GND	12	15	17	V
V _{BS}	High side bias voltage	Applied between VBOOTi-OUTi for i = U, V, W	11.5		17	V
t _{dead}	Blanking time to prevent Arm-short	For each input signal	1.5			μs
f _{PWM}	PWM input signal	-40°C < T _c < 100 °C -40°C < T _j < 125 °C			25	kHz
Tc	Case operation temperature				100	°C

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STGIPN3H60AT Package information

5.1 NDIP-26L type C package information

Figure 9: NDIP-26L type C package outline

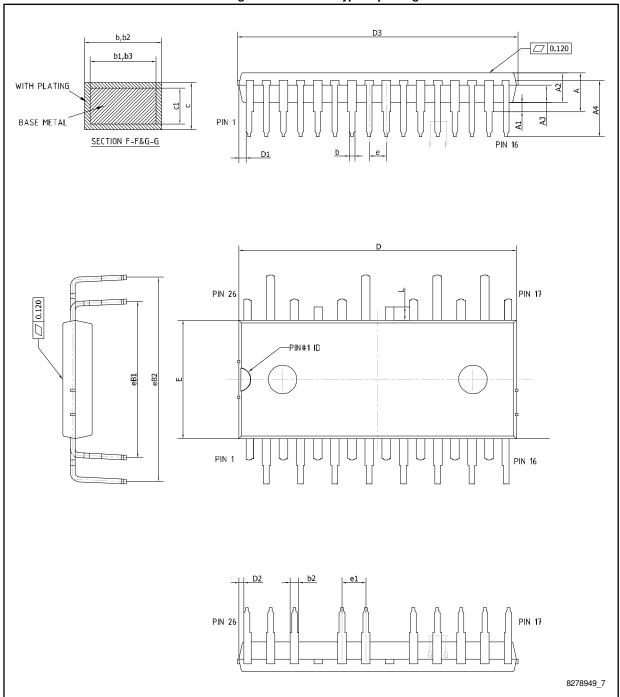


Table 14: NDIP-26L type C mechanical data

Table 14. Non-201 type o mechanical data					
Dim.		mm			
Diiii.	Min.	Тур.	Max.		
A			4.40		
A1	0.80	1.00	1.20		
A2	3.00	3.10	3.20		
A3	1.70	1.80	1.90		
A4	5.70	5.90	6.10		
b	0.53		0.72		
b1	0.52	0.60	0.68		
b2	0.83		1.02		
b3	0.82	0.90	0.98		
С	0.46		0.59		
c1	0.45	0.50	0.55		
D	29.05	29.15	29.25		
D1	0.50	0.77	1.00		
D2	0.35	0.53	0.70		
D3			29.55		
E	12.35	12.45	12.55		
е	1.70	1.80	1.90		
e1	2.40	2.50	2.60		
eB1	16.10	16.40	16.70		
eB2	21.18	21.48	21.78		
L	1.24	1.39	1.54		

STGIPN3H60AT Package information

5.2 NDIP-26L packing information

Figure 10: NDIP-26L tube dimensions (dimensions are in mm)

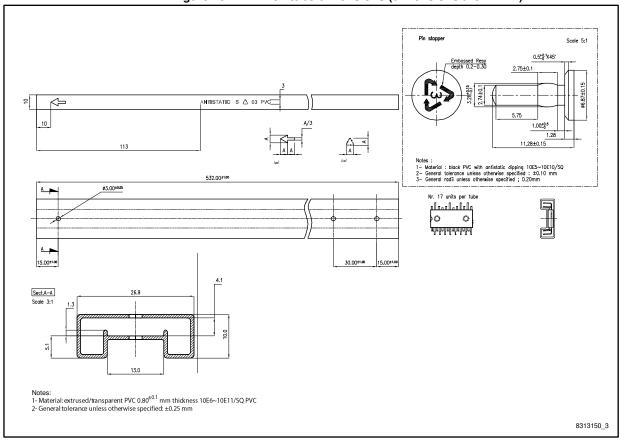


Table 15: Shipping details

Parameter	Value		
Base quantity	17 pcs		
Bulk quantity	476 pcs		

Revision history STGIPN3H60AT

6 Revision history

Table 16: Document revision history

Date	Revision	Changes	
30-Sep-2014	1	Initial release.	
13-Sep-2016	2	Updated Section 5.1: "NDIP-26L type C package information" and Section 5.2: "NDIP-26L packing information" Minor text changes	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved