

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

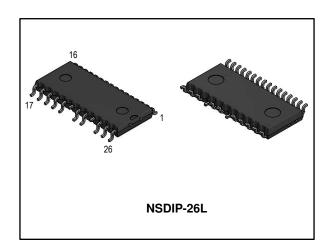
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STGIPNS3HD60-H

SLLIMM™-nano small low-loss intelligent molded module IPM, 3 A, 600 V, 3-phase IGBT inverter bridge

Datasheet - production data

Features

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes
- Optimized for low electromagnetic interference
- V_{CE(sat)} negative temperature coefficient
- 3.3 V, 5 V, 15 V CMOS/TTL inputs comparators with hysteresis and pull-down/pull-up resistors
- Blanking time t_{dead} ≥ 1 μs
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Comparator for fault protection against overtemperature and overcurrent
- Op-amp for advanced current sensing
- Optimized pinout for easy board layout
- Moisture sensitivity level (MSL) 3

Applications

- 3-phase inverters for motor drives
- Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

Description

This SLLIMM (small low-loss intelligent molded module) nano provides a compact, high-performance AC motor drive in a simple, rugged design. It is composed of six IGBTs and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is optimized for thermal performance and compactness in built-in motor applications, or other low-power applications where assembly space is limited. This IPM includes an operational amplifier, completely uncommitted, and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM™ is a trademark of STMicroelectronics.

Table 1: Device summary

Order code	Marking	Package	Packing
STGIPN3HD60-H	GIPN3HD60-H	NSDIP-26L	Tape and reel

January 2018 DocID030529 Rev 2 1/22

Contents

1	Internal	I schematic diagram and pin configuration	3
2		eal ratings	
	2.1	Absolute maximum ratings	6
	2.2	Thermal data	7
3	Electric	al characteristics	8
	3.1	Inverter part	8
	3.2	Control part	10
	3.3	Waveform definitions	12
4	Smart s	shutdown function	13
5	Applica	tion circuit example	15
	5.1	Guidelines	16
6	Packag	e information	18
	6.1		
7	Revisio	n history	

1 Internal schematic diagram and pin configuration

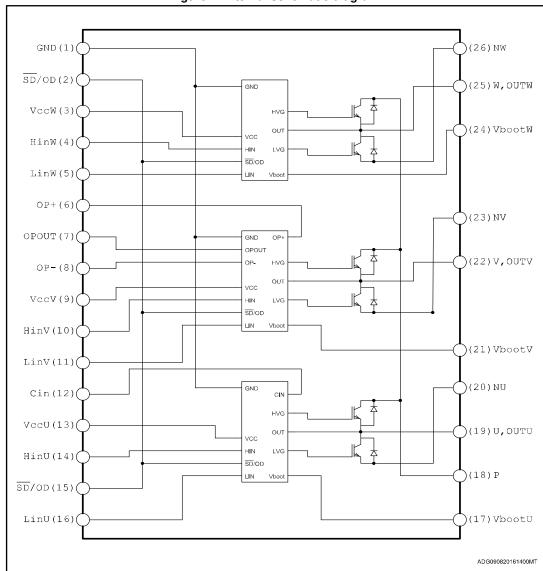
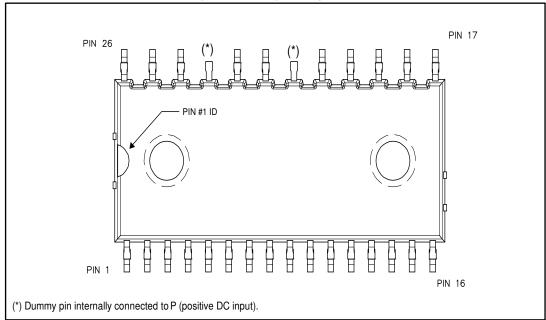



Figure 1: Internal schematic diagram

Table 2: Pin description

Pin	Symbol	Description
1	GND	Ground
2	SD / OD	Shutdown logic input (active-low)/open-drain (comparator output)
3	V _{CC} W	Low-voltage power supply W phase
4	HIN W	High-side logic input for W phase
5	LIN W	Low-side logic input for W phase
6	OP+	Op-amp non-inverting input
7	ОРоит	Op-amp output
8	OP-	Op-amp inverting input
9	Vcc V	Low-voltage power supply V phase
10	HIN V	High-side logic input for V phase
11	LIN V	Low-side logic input for V phase
12	CIN	Comparator input
13	V _{CC} U	Low-voltage power supply for U phase
14	HIN U	High-side logic input for U phase
15	SD / OD	Shutdown logic input (active-low)/open-drain (comparator output)
16	LIN U	Low-side logic input for U phase
17	V _{BOOT} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U , OUT_U	U phase output
20	Nυ	Negative DC input for U phase
21	V _{BOOT} V	Bootstrap voltage for V phase
22	V, OUT _V	V phase output
23	N_V	Negative DC input for V phase
24	V _{BOOT} W	Bootstrap voltage for W phase
25	W, OUTw	W phase output
26	Nw	Negative DC input for W phase

Figure 2: Pin layout (top view)

Electrical ratings STGIPNS3HD60-H

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3: Inverter part

Symbol	Parameter	Value	Unit
Vces	Each IGBT collector emitter voltage (V _{IN} ⁽¹⁾ = 0)	600	٧
± Ic ⁽²⁾	Each IGBT continuous collector current at T _C = 25°C	3	Α
± I _{CP} (3)	Each IGBT pulsed collector current	18	Α
Ртот	Each IGBT total dissipation at T _C = 25°C	7	W

Notes:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} * V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

Table 4: Control part

Symbol	Parameter	Min.	Max.	Unit
Vоит	Output voltage applied between OUT_U , OUT_V , OUT_W - GND	V _{boot} - 21	V _{boot} + 0.3	V
Vcc	Low-voltage power supply	- 0.3	21	V
V_{CIN}	Comparator input voltage	- 0.3	$V_{CC} + 0.3$	V
V_{op+}	Op-amp non-inverting input	- 0.3	Vcc + 0.3	V
V _{op} -	Op-amp inverting input	- 0.3	Vcc + 0.3	V
V_{boot}	Bootstrap voltage	- 0.3	620	V
V _{IN}	Logic input voltage applied among HIN, LIN and GND	- 0.3	15	V
$V_{\overline{SD}/OD}$	Open-drain voltage	- 0.3	15	V
$\Delta V_{\text{OUT/dT}}$	Allowed output slew rate		50	V/ns

Table 5: Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and the heatsink plate (AC voltage, $t=60\mathrm{s}$)	1000	V
Tj	Power chips operating junction temperature	-40 to 150	°C
Tc	Module case operation temperature	-40 to 125	°C

 $^{^{(1)}\!}Applied$ between HINx, LINx and GND for x = U, V, W.

⁽²⁾Calculated according to the iterative formula:

⁽³⁾Pulse width limited by max junction temperature.

STGIPNS3HD60-H Electrical ratings

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	44	°C/W

3 Electrical characteristics

3.1 Inverter part

 $T_J = 25$ °C unless otherwise specified

Table 7: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(f)} = 0 - 5 \text{ V},$ $I_{C} = 1 \text{ A}$	ı	2.15	2.6	V
		$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 - 5 \text{ V},$ $I_{C} = 1 \text{ A}, T_{J} = 125 \text{ °C}$	-	1.65		
ICES	Collector cut-off current $(V_{IN}^{(1)} = 0 \text{ "logic state"})$	V _{CE} = 550 V, V _{CC} = V _{Boot} = 15 V	-		250	μΑ
VF	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 1$ A	1		1.7	V

Notes:

Table 8: Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ton ⁽¹⁾	Turn-on time	V _{DD} = 300 V, V _{CC} = V _{boot} = 15 V, V _{IN} ⁽²⁾ = 0 - 5 V, I _C = 1 A (see <i>Figure 4: "Switching time</i>	-	158	1	
tc(on) ⁽¹⁾	Crossover time (on)		-	60	-	
toff ⁽¹⁾	Turn-off time		-	515	-	ns
t _{c(off)} (1)	Crossover time (off)		-	85	-	
t _{rr}	Reverse recovery time	definition")	-	82	-	
Eon	Turn-on switching energy		-	16	-	1
E _{off}	Turn-off switching energy		-	10	-	μJ

Notes:

 $^{^{(1)}}$ Applied between HIN_x, LIN_x and G_{ND} for x = U,V,W.

 $^{^{(1)}}$ toN and toFF include the propagation delay time of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching times of the IGBT itself under the internally given gate driving condition.

 $^{^{(2)}}$ Applied between HINx, LINx and G_{ND} for x = U,V,W.

Figure 3: Switching time test circuit

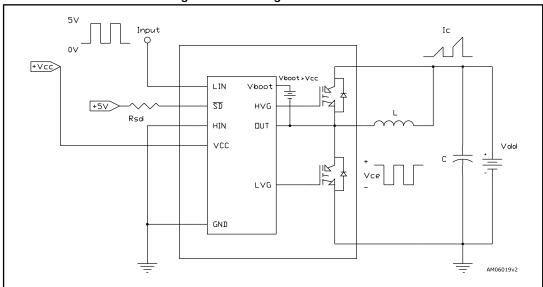


Figure 4: Switching time definition

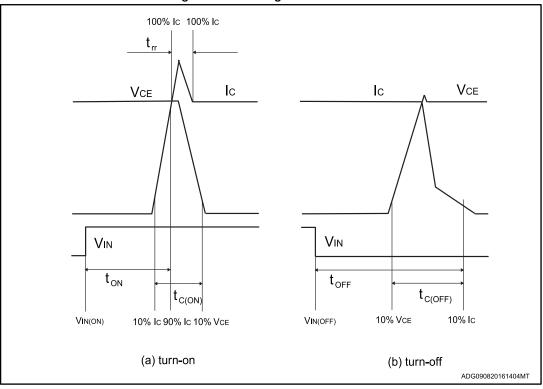


Figure 4: "Switching time definition" refers to the HIN and LIN inputs (active-high).

3.2 Control part

 $V_{\text{CC}} = 15 \text{ V}$ unless otherwise specified

Table 9: Low-voltage power supply

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_hys}	V _{CC} UV hysteresis		1.2	1.5	1.8	V
$V_{\text{CC_thON}}$	V _{CC} UV turn-ON threshold		11.5	12	12.5	>
$V_{\text{CC_thOFF}}$	V _{CC} UV turn-OFF threshold		10	10.5	11	>
I _{qccu}	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V}, \overline{SD} / OD = 5 \text{ V},$ $LIN = 0 \text{ V}, HIN = 0, C_{IN} = 0$			150	μΑ
I _{qcc}	Quiescent current	V _{cc} = 15 V, SD /OD = 5 V, LIN = 0 V, HIN = 0, C _{IN} = 0			1	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	٧

Table 10: Bootstrapped voltage

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
V _{BS_thON}	V _{BS} UV turn-ON threshold		11.1	11.5	12.1	٧
V_{BS_thOFF}	V _{BS} UV turn-OFF threshold		9.8	10	10.6	٧
I _{QBSU}	Undervoltage V _{BS} quiescent current	$V_{BS} < 9 \text{ V}, \overline{SD} / OD = 5 \text{ V},$ LIN = 0 V and HIN = 5 V, $C_{IN} = 0$		70	110	μΑ
I _{QBS}	V _{BS} quiescent current	$V_{BS} = 15 \text{ V}, \overline{\text{SD}} / \text{OD} = 5 \text{ V},$ LIN = 0 V and HIN = 5 V, C _{IN} = 0		200	300	μΑ
R _{DS(on)}	Bootstrap driver on-resistance	LVG ON		120		Ω

Table 11: Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vil	Low-logic level voltage				8.0	V
V_{ih}	High-logic level voltage		2.25			V
I _{HINh}	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μΑ
I _{HINI}	HIN logic "0" input bias current	HIN = 0 V			1	μΑ
I _{LINI}	LIN logic "0" input bias current	LIN = 0 V			1	μΑ
I _{LINh}	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μΑ
I _{SDh}	SD logic "0" input bias current	SD = 15 V	30	120	300	μΑ
I _{SDI}	SD logic "1" input bias current	SD = 0 V			3	μΑ
Dt	Dead time	See Figure 5: "Dead time and interlocking waveform definitions"		360		ns

Table 12: Op-amp characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vio	Input offset voltage	$V_{ic} = 0 \ V, \ V_o = 7.5 \ V$			6	mV
l _{io}	Input offset current	$V_{ic} = 0 \text{ V. } V_0 = 7.5 \text{ V}$		4	40	nA
l _{ib}	Input bias current (1)	$\mathbf{v}_{ic} = 0 \ \mathbf{v}, \ \mathbf{v}_{o} = 7.3 \ \mathbf{v}$		100	200	nA
Vol	Low-level output voltage	$R_L = 10 \text{ k}\Omega \text{ to V}_{CC}$		75	150	mV
Vон	High-level output voltage	R_L = 10 k Ω to GND	14	14.7		٧
I _o	Output short circuit current	Source, $V_{id} = + 1 V$, $V_o = 0 V$	16	30		mA
10	Output short circuit current	Sink, $V_{id} = -1 V$, $V_o = V_{CC}$	50	80		mA
SR	Slew rate	$V_i = 1 - 4 \text{ V}, C_L = 100 \text{ pF},$ unity gain	2.5	3.8		V/µs
GBWP	Gain bandwidth product	V _o = 7.5 V	8	12		MHz
A _{vd}	Large signal voltage gain	$R_L = 2 k\Omega$	70	85		dB
SVR	Supply voltage rejection ratio	vs. Vcc	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

Notes:

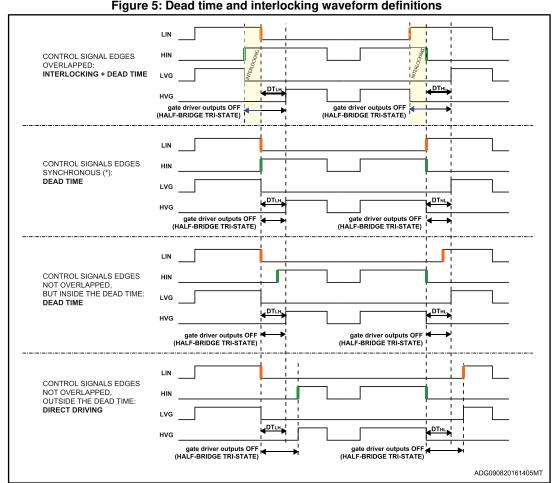
Table 13: Sense comparator characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
l _{ib}	Input bias current	V _{CIN} = 1 V			1	μΑ
Vol	Open drain low level output voltage	$I_{od} = 3 \text{ mA}$			0.5	V
RON_OD	Open-drain low-level output	I _{od} = 3 mA		166		Ω
R _{PD_SD}	SD pull-down resistor (1)			125		kΩ
t _{d_comp}	Comparator delay	SD /OD pulled to 5 V through 100 kΩ resistor		90	130	ns
SR	Slew rate	$C_L = 180 \text{ pF}; R_{pu} = 5 \text{ k}\Omega$		60		V/µs
t _{sd}	Shutdown to high- / low-side driver propagation delay	$\begin{aligned} V_{\text{OUT}} &= 0, \ V_{\text{boot}} = V_{\text{CC}}, \\ V_{\text{IN}} &= 0 \ \text{to} \ 3.3 \ V \end{aligned}$	50	125	200	
t _{isd}	Comparator triggering to high- / low-side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	ns

Notes:

 $^{^{(1)}}$ The direction of the input current is out of the IC.

⁽¹⁾Equivalent values as a result of the resistances of three drivers in parallel.


Table 14: Truth table

	Logic input (V _I)			Output	
Condition	SD /OD	LIN	HIN	LVG	HVG
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L
Interlocking half-bridge tri-state	Н	Н	Н	L	L
0 "logic state" half-bridge tri-state	Н	L	L	L	L
1 "logic state" low side direct driving	Н	Н	L	Н	L
1 "logic state" high side direct driving	Н	L	Н	Ĺ	Н

Notes:

Waveform definitions 3.3

Figure 5: Dead time and interlocking waveform definitions

⁽¹⁾X: don't care.

4 Smart shutdown function

The device integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference (VREF) connected to the inverting input, while the non-inverting input on the pin (CIN) can be connected to an external shunt resistor for simple overcurrent protection.

When the comparator triggers, the device is set to the shutdown state and both of its outputs are switched to the low-level setting, causing the half bridge to enter a tri-state.

In common overcurrent protection architectures, the comparator output is usually connected to the shutdown input through an RC network that provides a monostable circuit which implements a protection time following a fault condition.

Our smart shutdown architecture immediately turns off the output gate driver in case of overcurrent along a preferential path for the fault signal which directly switches off the outputs. The time delay between the fault and output shutdown does no longer depend on the RC values of the external network connected to the shutdown pin. At the same time, the DMOS connected to the open-drain output (SD/OD pin) is turned on by the internal logic, which holds it on until the shutdown voltage is lower than the logic input lower threshold (ViI).

Moreover, the smart shutdown function allows to increase the real disable time without increasing the constant time of the external RC network.

comp Vref CP+ HIN/LIN **PROTECTION** HVG/LVG $\overline{\text{SD}}/\text{OD}$ $\dot{ au}_2$ open-drain gate (internal) disable time Fast shutdown: the driver outputs are set to the SD state as soon as the comparator triggers even if the SD signal hasn't reached the lowest input threshold An approximation of the disable time is given by: SHUTDOWN CIRCUIT $\tau_1 = \left(R_{ON_OD} //R_{SD} //R_{PD_SD}\right) \cdot C_{SD} \cong R_{ON_OD} \cdot C_{SD}$ $\tau_2 = \left(R_{SD}//R_{PD_SD}\right) \cdot C_{SD}$ SMART SD $\frac{R_{ON_OD}//R_{PD_SD}}{\left(R_{ON_OD}/R_{PD_SD}\right) + R_{SD}} \cdot V_{BIAS} \cong \frac{R_{ON_OD}}{R_{ON_OD} + R_{SD}} \cdot V_{BIAS}$ LOGIC $V_{off} = \frac{R_{PD_SD}}{R_{PD_SD} + R_{SD}}$ GADG171120161315SA

Figure 6: Smart shutdown timing waveforms

Please refer to *Table 13: "Sense comparator characteristics"* for details on the internal propagation delay time.

5 Application circuit example

3 ₹ (HIN M MICROCONTROLLER ADG090820161407MT

Figure 7: Application circuit example

Application designers are free to use a different scheme according to the device specifications.

5.1 Guidelines

- Input signals HIN, LIN are active-high logic. A 375 k Ω (typ.) pull-down resistor is built-in for each input. To prevent input signal oscillation, the wiring of each input should be as short as possible and the use of RC filters (R1, C1) on each input signal is suggested. The filters should be done within a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- The use of a CVCC bypass capacitor (aluminum or tantalum) can help to reduce the transient circuit demand on the power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, it is suggested to place a C2 decoupling capacitor (100 to 220 nF, with low ESR and low ESL) as close as possible to the Vcc pin and in parallel whit the bypass capacitor.
- The use of an RC filter (RSF, CSF) for preventing protection circuit malfunction is recommended. The time constant (RSF x CSF) should be set to 1 μs and the filter must be placed as close as possible to the CIN pin.
- The SD is an input/output pin (open-drain type if used as output). The CSD capacitor of the filter on SD should be fixed no higher than 3.3 nF in order to assure an SD activation time of T₁ ≤ 500 ns, in addition the filter should be placed as close as possible to the SD pin.
- The C3 decoupling capacitor (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each C_{boot}, is useful to filter any high-frequency disturbance. Both C_{boot} and C3 (if present) should be placed as close as possible to the U, V, W and Vboot pins. Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires.
- To prevent overvoltage on the Vcc pin, a Zener diode (Dz1) can be used. Similarly, a Zener diode (Dz2) can be placed on the V_{boot} pin in parallel with each C_{boot}.
- The use of the decoupling capacitor C₄ (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor C_{vdc} is useful to prevent surge destruction. Both capacitors C₄ and C_{vdc} should be placed as close as possible to the IPM (C₄ has priority over C_{vdc}).
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-coupler is possible.
- Use low-inductance shunt resistors for phase leg current sensing.
- To avoid any malfunctions, the wiring between the N pins, the shunt resistor and PwR_GND should be as short as possible.
- The connection of SGN_GND to PWR_GND at only one point (close to the shunt resistor terminal) can help to reduce the impact of power ground fluctuation.

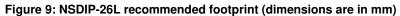
These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note.

Table 15: Recommended operating conditions

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
V_{PN}	Supply voltage	Applied between P-Nu, Nv, Nw		300	500	V
Vcc	Control supply voltage	Applied between Vcc-GND	13.5	15	18	V
V _{BS}	High-side bias voltage	Applied between V_{BOOTi} -OUT _i for $i = U, V, W$	13		18	٧
t _{dead}	Blanking time to prevent Arm-short	For each input signal	1			μs
fрwм	PWM input signal	-40°C < T _c < 100 °C -40°C < T _j < 125 °C			25	kHz
Tc	Case operation temperature				100	°C

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.


6.1 NSDIP-26L package information

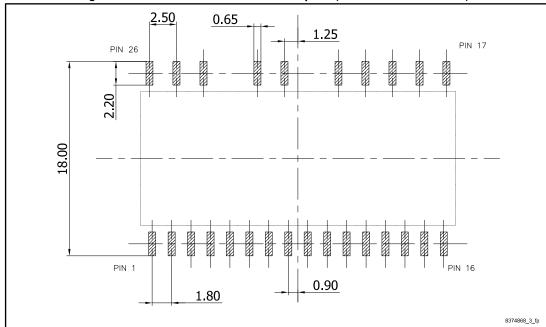

0.10 b **⊕** 0.25 **M** DETAIL A PIN 26 8374968_3

Figure 8: NSDIP-26L package outline

Table 16: NSDIP-26L package mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А			3.45
A1	0.10		0.25
A2	3.00	3.10	3.20
A3	1.70	1.80	1.90
b	0.47		0.57
b1	0.45	0.50	0.55
b2	0.63		0.67
С	0.47		0.57
c1	0.45	0.50	0.55
D	29.05	29.15	29.25
D1	0.70		
D2	0.45		
D3	0.90		
D4			29.65
Е	12.35	12.45	12.55
E1	16.70	17.00	17.30
E2	0.35		
е	1.70	1.80	1.90
e1	2.40	2.50	2.60
L	1.24	1.39	1.54
L1	1.00	1.15	1.30
L2		0.25 BSC	
L3		2.275 REF	
R1	0.25	0.40	0.55
R2	0.25	0.40	0.55
S		0.39	0.55
θ	0°		8°
Θ1		3° BSC	
Θ2	10°	12°	14°

STGIPNS3HD60-H Revision history

7 Revision history

Table 17: Document revision history

Date	Revision	Changes	
19-Apr-2017	1	Initial release	
19-Jan-2018	2	Datasheet status promoted from preliminary to production data. Updated features on cover page. Updated Table 3: "Inverter part", Table 5: "Total system", Table 6: "Thermal data", Table 9: "Low-voltage power supply", Table 10: "Bootstrapped voltage" and Table 13: "Sense comparator characteristics". Updated Figure 6: "Smart shutdown timing waveforms". Updated Section 6.1: "NSDIP-26L package information". Minor text changes	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

