

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# STGB10NB60S STGP10NB60S

### 16 A, 600 V, low drop IGBT

#### **Features**

- Low on-voltage drop (V<sub>CE(sat)</sub>)
- High current capability

#### **Applications**

- Light dimmer
- Static relays
- Motor drive

#### **Description**

This IGBT utilizes the advanced PowerMESH™ process featuring extremely low on-state voltage drop in low-frequency working conditions (up to 1 kHz).

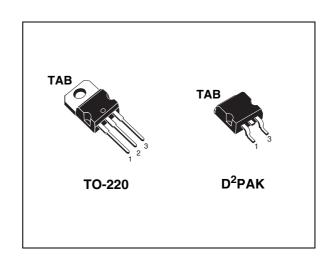



Figure 1. Internal schematic diagram

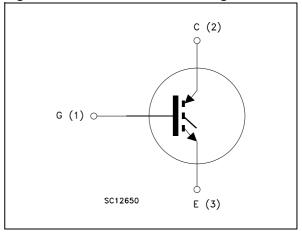



Table 1. Device summary

| Order codes   | Order codes Marking   |                    | Packaging     |
|---------------|-----------------------|--------------------|---------------|
| STGB10NB60ST4 | GB10NB60S             | D <sup>2</sup> PAK | Tape and reel |
| STGP10NB60S   | STGP10NB60S GP10NB60S |                    | Tube          |

September 2011 Doc ID 10985 Rev 4 1/19

## **Contents**

| 1 | Electrical ratings         | 3   |
|---|----------------------------|-----|
| 2 | Electrical characteristics |     |
| 3 | Test circuits              | . 9 |
| 4 | Package mechanical data    | 10  |
| 5 | Packaging mechanical data  | 15  |
| 6 | Revision history           | 18  |

## 1 Electrical ratings

Table 2. Absolute maximum ratings

| Symbol                         | Parameter                                               | Value       | Unit |
|--------------------------------|---------------------------------------------------------|-------------|------|
| V <sub>CES</sub>               | Collector-emitter voltage (V <sub>GE</sub> = 0)         | 600         | V    |
| I <sub>C</sub> <sup>(1)</sup>  | Continuous collector current at T <sub>C</sub> = 25 °C  | 29          | Α    |
| I <sub>C</sub> <sup>(1)</sup>  | Continuous collector current at T <sub>C</sub> = 100 °C | 16          | Α    |
| I <sub>CL</sub> (2)            | Turn-off latching current                               | 20          | Α    |
| I <sub>CP</sub> <sup>(3)</sup> | Pulsed collector current                                | 80          | Α    |
| V <sub>GE</sub>                | Gate-emitter voltage                                    | ± 20        | V    |
| P <sub>TOT</sub>               | Total dissipation at T <sub>C</sub> = 25 °C             | 80          | W    |
| T <sub>j</sub>                 | Operating junction temperature                          | – 55 to 150 | °C   |

<sup>1.</sup> Calculated according to the iterative formula

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. Vclamp = 80% of V<sub>CES</sub>, T<sub>j</sub> =150 °C, R<sub>G</sub>=1k $\Omega$ , V<sub>GE</sub>=15 V
- 3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

Table 3. Thermal data

| Symbol                | Parameter                           | Value | Unit |
|-----------------------|-------------------------------------|-------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case    | 1.56  | °C/W |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient | 62.5  | °C/W |

## 2 Electrical characteristics

 $(T_j = 25 \, ^{\circ}C \text{ unless otherwise specified})$ 

Table 4. Static

| Symbol               | Parameter                                                 | Test conditions                                                                                                                                                            | Min. | Тур.                 | Max.      | Unit                     |
|----------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|-----------|--------------------------|
| V <sub>(BR)CES</sub> | Collector-emitter breakdown voltage (V <sub>GE</sub> = 0) | I <sub>C</sub> = 250 μA                                                                                                                                                    | 600  |                      |           | ٧                        |
| V <sub>(BR)ECS</sub> | Emitter-collector breakdown voltage (V <sub>GE</sub> = 0) | I <sub>C</sub> = 1 mA                                                                                                                                                      | 20   |                      |           | ٧                        |
| I <sub>GES</sub>     | Gate-emitter leakage current (V <sub>CE</sub> = 0)        | V <sub>GE</sub> = ±20 V                                                                                                                                                    |      |                      | ±100      | nA                       |
| I <sub>CES</sub>     | Collector cut-off current (V <sub>GE</sub> = 0)           | V <sub>CE</sub> = 600 V<br>V <sub>CE</sub> = 600 V, T <sub>j</sub> = 125 °C                                                                                                |      |                      | 10<br>100 | μ <b>Α</b><br>μ <b>Α</b> |
| V <sub>GE(th)</sub>  | Gate threshold voltage                                    | $V_{CE} = V_{GE}, I_{C} = 250 \mu A$                                                                                                                                       | 2.5  |                      | 5         | ٧                        |
| V <sub>CE(sat)</sub> | Collector-emitter saturation voltage                      | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 5 A<br>V <sub>GE</sub> = 15 V, I <sub>C</sub> = 10 A<br>V <sub>GE</sub> = 15 V, I <sub>C</sub> = 10 A,<br>T <sub>j</sub> = 125 °C |      | 1.15<br>1.35<br>1.25 | 1.75      | V                        |
| 9 <sub>fs</sub> (1)  | Forward transconductance                                  | $V_{CE} = 15 \text{ V}, I_{C} = 10 \text{ A}$                                                                                                                              | 5    |                      |           | S                        |

<sup>1.</sup> Pulsed: Pulse duration = 300  $\mu$ s, duty cycle 1.5%

Table 5. Dynamic

| Symbol                                                   | Parameter                                                         | Test conditions                                                                          | Min. | Тур.            | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|-----------------|------|----------------|
| C <sub>ies</sub><br>C <sub>oes</sub><br>C <sub>res</sub> | Input capacitance Output capacitance Reverse transfer capacitance | V <sub>CE</sub> = 25 V, f = 1 MHz, V <sub>GE</sub> = 0                                   | -    | 610<br>65<br>12 | -    | pF<br>pF<br>pF |
| Qg                                                       | Total gate charge                                                 | $V_{CE} = 400 \text{ V, } I_{C} = 10 \text{ A,}$ $V_{GE} = 15 \text{ V}$ (see Figure 17) |      | 33              | 1    | nC             |

Table 6. Switching on/off (inductive load)

| Symbol                                                                              | Parameter                                                   | Test conditions                                                                                                                              | Min. | Тур.              | Max. | Unit             |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------|------------------|
| t <sub>d(on)</sub><br>t <sub>r</sub><br>(di/dt) <sub>on</sub>                       | Turn-on delay time Current rise time Turn-on current slope  | $V_{CC}$ = 480 V, $I_{C}$ = 10 A<br>$R_{G}$ = 1 k $\Omega$ , $V_{GE}$ = 15 V<br>(see Figure 16)                                              | -    | 0.7<br>0.46<br>8  | -    | μs<br>μs<br>Α/μs |
| $t_r(V_{off})$ $t_d(_{off})$ $t_f$                                                  | Off voltage rise time Turn-off delay time Current fall time | $V_{CC} = 480 \text{ V}, I_{C} = 10 \text{ A}$ $R_{G} = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V}$ (see Figure 16)                            | -    | 2.2<br>1.2<br>1.2 | -    | μs               |
| t <sub>r</sub> (V <sub>off</sub> ) t <sub>d</sub> ( <sub>off</sub> ) t <sub>f</sub> | Off voltage rise time Turn-off delay time Current fall time | $V_{CC} = 480 \text{ V, } I_{C} = 10 \text{ A}$ $R_{G} = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V,}$ $T_{j} = 125 \text{ °C}$ (see Figure 16) | -    | 3.8<br>1.2<br>1.9 | -    | μs               |

Table 7. Switching energy (inductive load)

| Symbol                                                             | Parameter                                                                 | Test conditions                                                                                                                              | Min. | Тур.            | Max. | Unit           |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|------|----------------|
| Eon <sup>(1)</sup> E <sub>off</sub> <sup>(2)</sup> E <sub>ts</sub> | Turn-on switching losses Turn-off switching losses Total switching losses | $V_{CC}$ = 480 V, $I_{C}$ = 10 A<br>$R_{G}$ = 1 k $\Omega$ , $V_{GE}$ = 15 V<br>(see Figure 16)                                              | -    | 0.6<br>5<br>5.6 | -    | mJ<br>mJ<br>mJ |
| E <sub>off</sub> <sup>(2)</sup>                                    | Turn-off switching losses                                                 | $V_{CC} = 480 \text{ V, } I_{C} = 10 \text{ A}$ $R_{G} = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V,}$ $T_{j} = 125 \text{ °C}$ (see Figure 16) | -    | 8               | -    | mJ             |

Eon is the turn-on losses when a typical diode is used in the test circuit. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature (25°C and 125°C).

<sup>2.</sup> Turn-off losses include also the tail of the collector current.

#### 2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

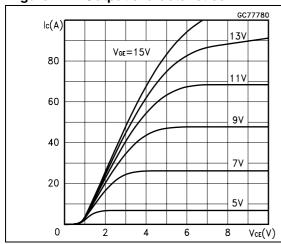



Figure 3. Transfer characteristics

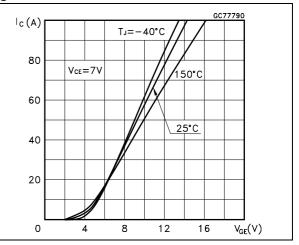
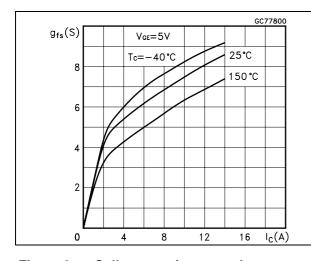




Figure 4. Transconductance

Figure 5. Collector-emitter on voltage vs. temperature



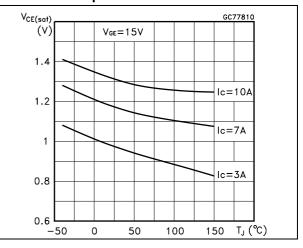
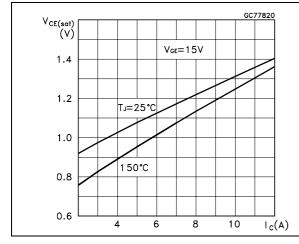
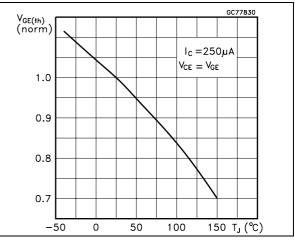
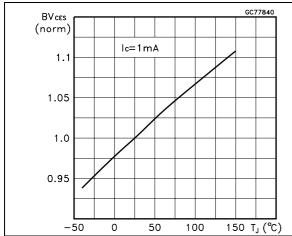





Figure 6. Collector-emitter on voltage vs. collector current


Figure 7. Normalized gate threshold vs. temperature





477

Figure 8. Normalized breakdown voltage vs. Figure 9. Gate charge vs. gate-emitter temperature voltage



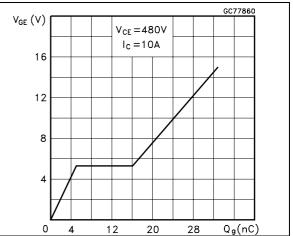



Figure 10. Capacitance variations

GC77850 C(pF) f=1MHz  $V_{GE} = 0V$ 800 Cies 600 400 200 Coes Cres 0 5 10 15 20  $V_{CE}(V)$ 

Figure 11. Switching losses vs. temperature

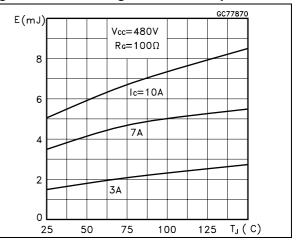
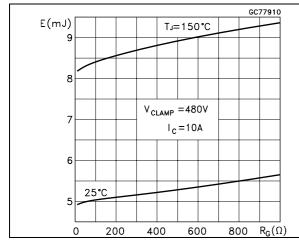
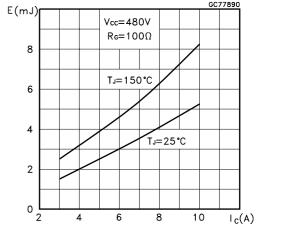
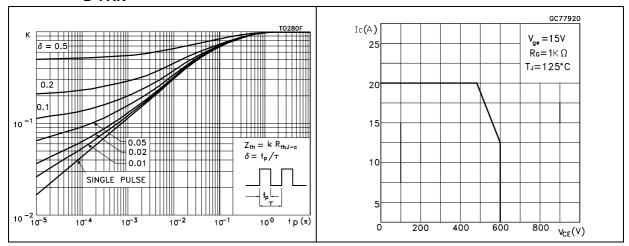





Figure 12. Switching losses vs. gate resistance


Figure 13. Switching losses vs. collector current





577

Figure 14. Thermal impedance for TO-220 and  $\,$  Figure 15. Turn-off SOA  $\,$   $\,$  D $^2$ PAK  $\,$ 



8/19 Doc ID 10985 Rev 4

### 3 Test circuits

Figure 16. Test circuit for inductive load switching

Figure 17. Gate charge test circuit

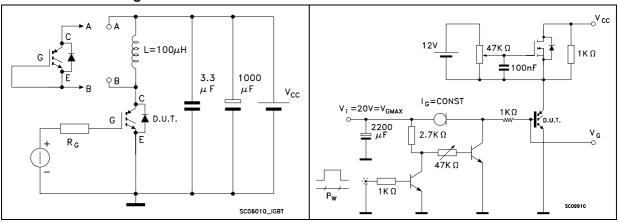
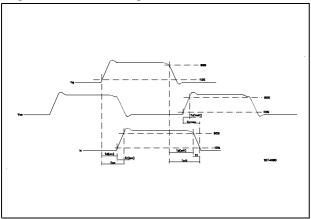




Figure 18. Switching waveforms



# 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10/19 Doc ID 10985 Rev 4

Table 8. D<sup>2</sup>PAK (TO-263) mechanical data

|      | AR (10-200) mechanic | mm   |       |
|------|----------------------|------|-------|
| Dim. | Min.                 | Тур. | Max.  |
| Α    | 4.40                 |      | 4.60  |
| A1   | 0.03                 |      | 0.23  |
| b    | 0.70                 |      | 0.93  |
| b2   | 1.14                 |      | 1.70  |
| С    | 0.45                 |      | 0.60  |
| c2   | 1.23                 |      | 1.36  |
| D    | 8.95                 |      | 9.35  |
| D1   | 7.50                 |      |       |
| E    | 10                   |      | 10.40 |
| E1   | 8.50                 |      |       |
| е    |                      | 2.54 |       |
| e1   | 4.88                 |      | 5.28  |
| Н    | 15                   |      | 15.85 |
| J1   | 2.49                 |      | 2.69  |
| L    | 2.29                 |      | 2.79  |
| L1   | 1.27                 |      | 1.40  |
| L2   | 1.30                 |      | 1.75  |
| R    |                      | 0.4  |       |
| V2   | 0°                   |      | 8°    |

SEATING PLANE

COPLANARITY A1

CAUGE PLANE

V2

0079457\_S

Figure 19. D<sup>2</sup>PAK (TO-263) drawing

12/19 Doc ID 10985 Rev 4

Table 9. TO-220 type A mechanical data

| D:   |       | mm.   |       |
|------|-------|-------|-------|
| Dim. | Min.  | Тур.  | Max.  |
| Α    | 4.40  |       | 4.60  |
| b    | 0.61  |       | 0.88  |
| b1   | 1.14  |       | 1.70  |
| С    | 0.48  |       | 0.70  |
| D    | 15.25 |       | 15.75 |
| D1   |       | 1.27  |       |
| E    | 10    |       | 10.40 |
| е    | 2.40  |       | 2.70  |
| e1   | 4.95  |       | 5.15  |
| F    | 1.23  |       | 1.32  |
| H1   | 6.20  |       | 6.60  |
| J1   | 2.40  |       | 2.72  |
| L    | 13    |       | 14    |
| L1   | 3.50  |       | 3.93  |
| L20  |       | 16.40 |       |
| L30  |       | 28.90 |       |
| ØP   | 3.75  |       | 3.85  |
| Q    | 2.65  |       | 2.95  |

Figure 20. TO-220 type A drawing

# 5 Packaging mechanical data

Table 10. D<sup>2</sup>PAK (TO-263) tape and reel mechanical data

|      | Таре |      |      | Reel     |      |  |
|------|------|------|------|----------|------|--|
|      |      | mm.  | Dim  | mm.      |      |  |
| Dim. | Min. | Max. | Dim. | Min.     | Max. |  |
| A0   | 10.5 | 10.7 | Α    |          | 330  |  |
| В0   | 15.7 | 15.9 | В    | 1.5      |      |  |
| D    | 1.5  | 1.6  | С    | 12.8     | 13.2 |  |
| D1   | 1.59 | 1.61 | D    | 20.2     |      |  |
| Е    | 1.65 | 1.85 | G    | 24.4     | 26.4 |  |
| F    | 11.4 | 11.6 | N    | 100      |      |  |
| K0   | 4.8  | 5.0  | Т    |          | 30.4 |  |
| P0   | 3.9  | 4.1  |      |          |      |  |
| P1   | 11.9 | 12.1 |      | Base qty | 1000 |  |
| P2   | 1.9  | 2.1  |      | Bulk qty | 1000 |  |
| R    | 50   |      |      |          |      |  |
| Т    | 0.25 | 0.35 |      |          |      |  |
| W    | 23.7 | 24.3 |      |          |      |  |

Figure 21. D<sup>2</sup>PAK footprint <sup>(a)</sup>

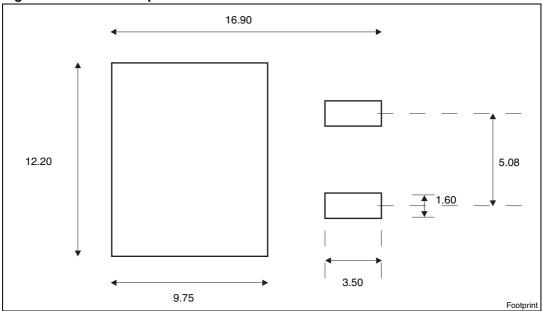
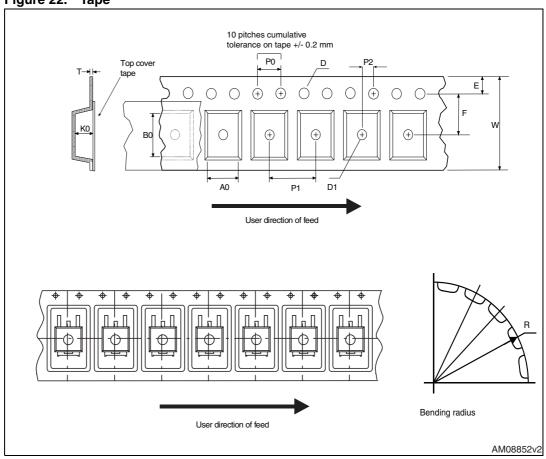
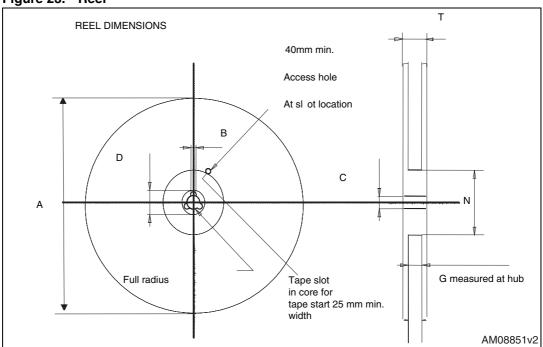





Figure 22. Tape



a. All dimension are in millimeters.

Figure 23. Reel



# 6 Revision history

Table 11. Document revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                         |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-Nov-2004 | 1        | New release.                                                                                                                                                                                                                                                                    |
| 28-Feb-2005 | 2        | Some values changed in Table 4: Static.                                                                                                                                                                                                                                         |
| 16-Dec-2010 | 3        | Updated <i>Table 2: Absolute maximum ratings</i> . Updated mechanical data <i>Section 4: Package mechanical data</i> .                                                                                                                                                          |
| 27-Sep-2011 | 4        | Modified: unit value <i>Table 7 on page 5</i> , <i>Figure 2</i> and <i>Figure 3 on page 6</i> .  Updated mechanical data D <sup>2</sup> PAK <i>Table 8 on page 11</i> and <i>Figure 19 on page 12</i> .  Removed order code STGP10NB60SFP and TO-220FP package mechanical data. |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

