mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

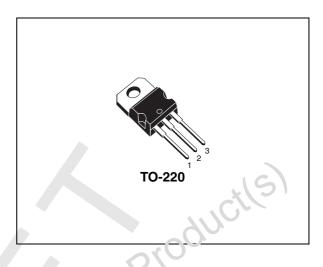
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGP10NC60H

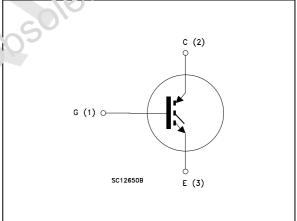
N-channel 10A - 600V - TO-220 Very fast PowerMESH™ IGBT

Features

Туре	V _{CES}	V _{CE(sat)} (Max)@ 25°C	Ι _C @100°C
STGP10NC60H	600V	< 2.5V	10A


- Low on-voltage drop (V_{cesat})
- Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)

Description


Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH[™] IGBTs, with outstanding performances. The suffix "H" identifies a family optimized for high frequency applications in order to achieve very high switching performances (reduced tfall) manta in ing a low voltage drop.

Applications

- High frequency motor controls
- SMPS and PFC in both hard switch and resonant topologies
- Motor drivers

Internal schematic diagram

Order code

Part number	Marking	Package	Packaging
STGP10NC60H	GP10NC60H	TO-220	Tube

Contents

1	Electrical ratings
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 6
•	
3	Test circuits
4	Package mechanical data 10
5	Revision history
	obsolete Product(S)

obsolete

Electrical ratings 1

Table 1. Absolute maximum rating	IS
----------------------------------	----

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GS} = 0)	600	V
I _C ⁽¹⁾	Collector current (continuous) at $T_C = 25^{\circ}C$	20	А
I _C ⁽¹⁾	Collector current (continuous) at $T_C = 100^{\circ}C$	10	А
$I_{CL}^{(2)}$	Collector current (pulsed)	40	А
V_{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	60	W
Тj	Operating junction temperature	– 55 to 150	°C
1. Calculate	ed according to the iterative formula:		(5)
$I_{C}(T_{C}) = \frac{1}{R_{TH}}$	$\frac{T_{JMAX} - T_{C}}{J - C^{\times V}CESAT(MAX)^{(T_{C}, I_{C})}}$	oroduct	
2. V _{clamp} =4	80V, Tj=150°C, R _G =10Ω, V _{GE} =15V	0100	
Table 2.	Thermal resistance	> <	

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

Table 2. **Thermal resistance**

obsolete

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	2.08	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 5.	Static					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-emitter breakdown voltage	I _C = 1mA, V _{GE} = 0	600			V
I _{CES}	Collector cut-off current $(V_{GE} = 0)$	V _{CE} = Max rating,T _C = 25°C V _{CE} =Max rating,T _C = 125°C			150 1	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V_{GE} = ±20V, V_{CE} = 0			±100	nA
V _{GE(th)}	Gate threshold voltage	V_{CE} = V_{GE} , I_C = 250 μ A	3.75		5.75	V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15V, I _C = 5A V _{GE} = 15V, I _C = 5A, Tc= 125°C		1.9 1.7	2.5	v v
9 _{fs}	Forward transconductance	$V_{CE} = 15V_{,}I_{C} = 5A$		3.5		S

Table 3. Static

Table 4. Dynamic

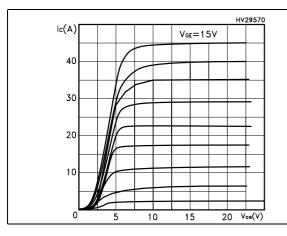
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{CE} = 25V$, f = 1MHz, $V_{GE} = 0$		365 43 8.3		pF pF pF
	Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 390V, I_C = 5A,$ $V_{GE} = 15V,$ <i>(see Figure 16)</i>		19.2 4.5 7		nC nC nC
Obsole		code					

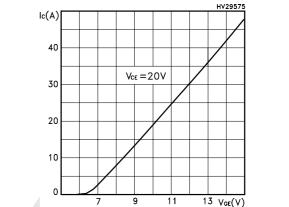
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 390V, I _C = 5A R _G = 10 Ω , V _{GE} = 15V, <i>Figure 15. and Figure 17.</i>		14.2 5 1000		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 390V, I _C = 5A R _G = 10 Ω , V _{GE} = 15V, Tj=125°C <i>Figure 15. and Figure 17.</i>		14 5 920		ns ns A/µs
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{cc} = 390V, I_C = 5A,$ $R_{GE} = 10\Omega, V_{GE} = 15V,$ Figure 15. and Figure 17.		27 72 85		ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{cc} = 390V, I_C = 5A,$ $R_{GE}=10\Omega, V_{GE} = 15V,$ $Tj=125^{\circ}C$ <i>Figure 15. and Figure 17.</i>		50 108 139		ns ns ns

Table 5. Switching on/off (inductive load)

Switching energy (inductive load) Table 6.

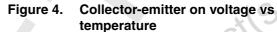
4		Figure 15. and Figure 17.	-		· · ·	
Table 6.	Switching energy (indu		10/	30		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} E _{off} ⁽¹⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390V, I_C = 5A$ $R_G = 10\Omega, V_{GE} = 15V,$ $Tj = 25^{\circ}C$ <i>(see Figure 17)</i>		31.8 95 126.8		μJ μJ μJ
E _{on} E _{off} ⁽¹⁾ E _{ts}	Turn-on switching losses Turn-off switching Losses Total switching losses	$V_{CC} = 390V, I_C = 5A$ $R_G = 10\Omega, V_{GE} = 15V,$ $Tj = 125^{\circ}C$ <i>(see Figure 17)</i>		61.8 173 234.8		μJ μJ μJ


1. Turn-off losses include also the tail of the collector current Obsolete Fr



57

2.1 Electrical characteristics (curves)


Figure 1. Output characteristics

Transfer characteristics

Figure 3. Transconductance

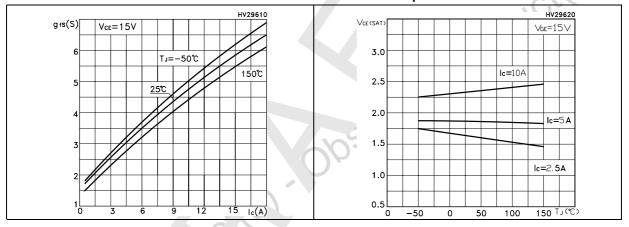
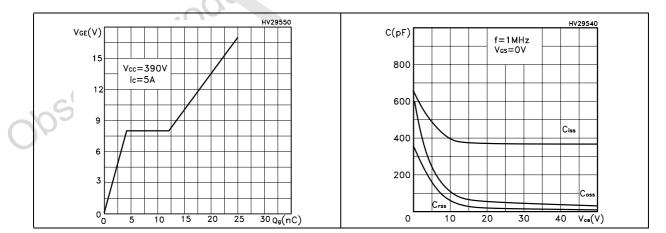



Figure 2.

Figure 5. Gate charge vs gate-source voltage Figure 6. Capacitance variations

Figure 7. Normalized gate threshold voltage vs temperature

Figure 8. Collector-emitter on voltage vs collector current

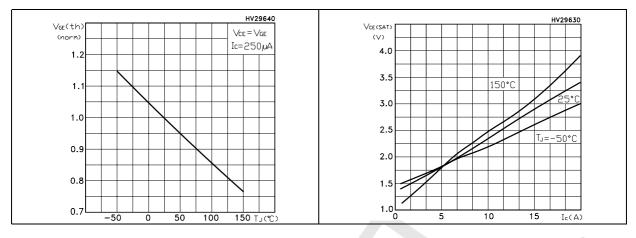


Figure 9. Normalized breakdown voltage vs Figure 10. Switching losses vs temperature

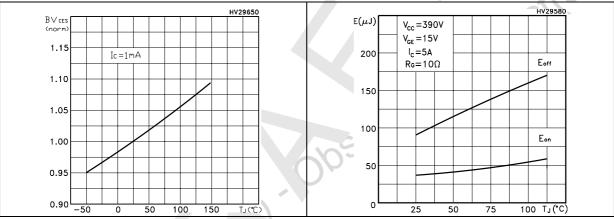
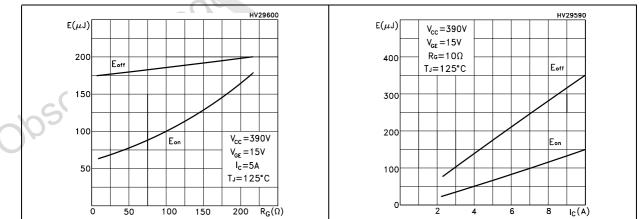
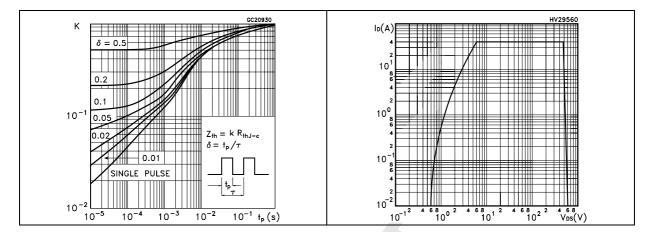




Figure 11. Switching losses vs gate resistance Figure 12. Switching losses vs collector current

Figure 13. Thermal Impedance

Figure 14. Turn-off SOA

obsolete Productis

_o^Vcc

Test circuits 3

Figure 15. Test circuit for inductive load switching

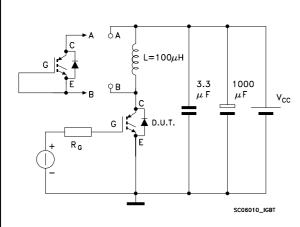
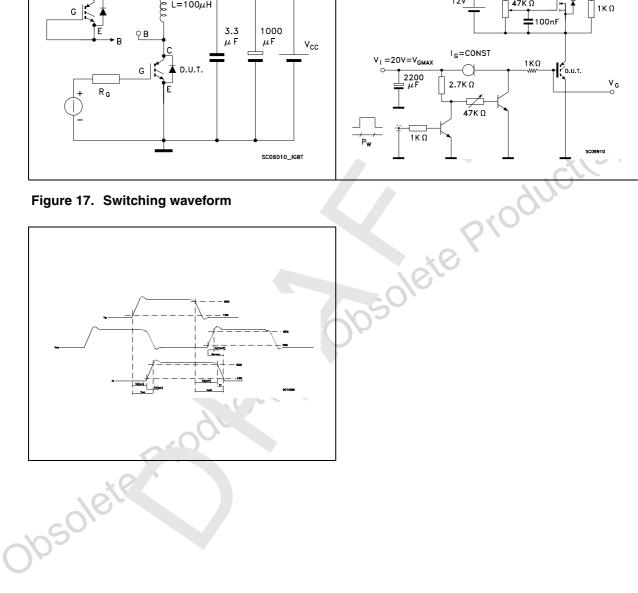



Figure 16. Gate charge test circuit

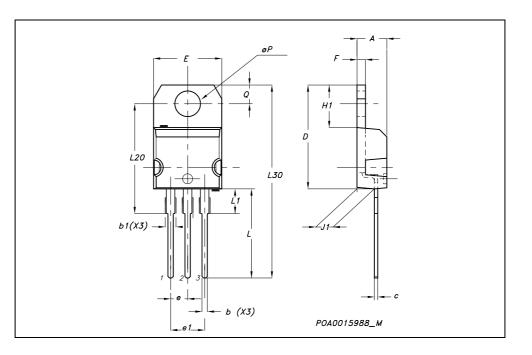
12V

47K Ω

57

57

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

solete Product

3050leter ad

DIM.		mm.			inch	
DTIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
Е	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øР	3.75	T	3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

TO-220 MECHANICAL DATA

57

11/13

57

5 Revision history

obsoleter

Date	Revision	Changes
18-Nov-2005	1	Initial release.
12-Oct-2006	2	The document has been reformatted
02-Apr-2007	3	Corrected value on Table 3.

Spsolete Productle

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

