

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGP15M65DF2

Trench gate field-stop IGBT M series, 650 V, 15 A low-loss

Datasheet - production data

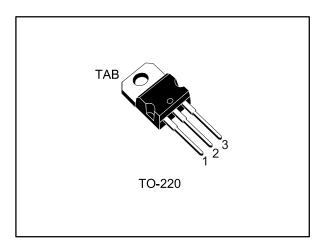
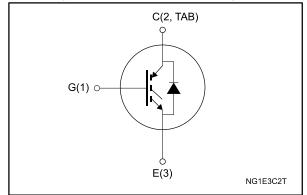



Figure 1: Internal schematic diagram

Features

- 6 μs of short-circuit withstand time
- V_{CE(sat)} = 1.55 V (typ.) @ I_C = 15 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive V_{CE(sat)} temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGP15M65DF2	G15M65DF2	TO-220	Tube

Contents STGP15M65DF2

Contents

1	Electrical ratings				
2	Electric	cal characteristics	4		
	2.1	Electrical characteristics (curves)	7		
3	Test cir	œuits	13		
4	Packag	e information	14		
	4.1	TO-220 type A package information	15		
5	Revisio	n history	17		

STGP15M65DF2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter Value		Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	650	V
la.	Continuous collector current at T _C = 25 °C	30	Α
lc	Continuous collector current at T _C = 100 °C	15	A
ICP ⁽¹⁾	Pulsed collector current	60	Α
V_{GE}	Gate-emitter voltage ±20		V
	Continuous forward current at T _C = 25 °C	30	Α
l _F	Continuous forward current at T _C = 100 °C	15	A
I _{FP} ⁽¹⁾	Pulsed forward current 60		Α
Ртот	Total dissipation at T _C = 25 °C 136		W
T _{STG}	Storage temperature range - 55 to 150		°C
T_J	Operating junction temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

	Symbol	Parameter	Value	Unit
	RthJC	Thermal resistance junction-case IGBT	1.1	
Ī	R _{th} JC	Thermal resistance junction-case diode	2.08	°C/W
	RthJA	Thermal resistance junction-ambient	62.5	

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by maximum junction temperature.

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_C = 2 \text{ mA}$	650			٧
		$V_{GE} = 15 \text{ V}, I_{C} = 15 \text{ A}$		1.55	2.0	
V _{CE(sat)} Collector-emitter saturation voltage	Collector-emitter saturation	$V_{GE} = 15 \text{ V}, I_{C} = 15 \text{ A},$ $T_{J} = 125 \text{ °C}$		1.9		V
	voltage	$V_{GE} = 15 \text{ V}, I_{C} = 15 \text{ A},$ $T_{J} = 175 ^{\circ}\text{C}$		2.1		
		I _F = 15 A		1.7		
V_{F}	Forward on-voltage	I _F = 15 A, T _J = 125 °C		1.5		V
		I _F = 15 A, T _J = 175 °C		1.4		
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE}=V_{GE},I_C=500\;\mu A$	5	6	7	>
Ices	Collector cut-off current	$V_{GE} = 0 V$, $V_{CE} = 650 V$			25	μΑ
I _{GES}	Gate-emitter leakage current	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±250	μΑ

Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	1250	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	80	1	pF
C _{res}	Reverse transfer capacitance		-	25	ı	
Q_g	Total gate charge		-	45	1	
Q _{ge}	Gate-emitter charge	Vcc = 520 V, lc = 15 A, V _{GE} = 15 V (see <i>Figure 30: " Gate charge test</i>	-	11	-	nC
Qgc	Gate-collector charge	circuit")	-	15	1	

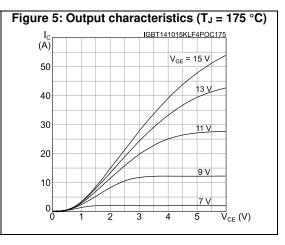
Table 6: IGBT switching characteristics (inductive load)

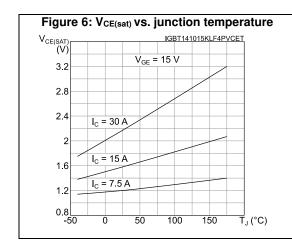
Table 6: IGBT switching characteristics (inductive load)						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			24	-	ns
t _r	Current rise time			7.8	ı	ns
(di/dt) _{on}	Turn-on current slope			1570	-	A/μs
t _{d(off)}	Turn-off-delay time	V 400 V 1 45 A V 45 V		93	-	ns
t _f	Current fall time	V _{CE} = 400 V, I _C = 15 A, V _{GE} = 15 V, R _G = 12 Ω (see <i>Figure 29: " Test circuit for inductive load switching"</i>)		106	-	ns
E _{on} ⁽¹⁾	Turn-on switching energy	, , , , , , , , , , , , , , , , , , ,		0.09	-	mJ
E _{off} (2)	Turn-off switching energy			0.45	-	mJ
E _{ts}	Total switching energy			0.54	-	mJ
t _{d(on)}	Turn-on delay time			24.8	ı	ns
tr	Current rise time			9.2	-	ns
(di/dt) _{on}	Turn-on current slope			1300	ı	A/μs
t _{d(off)}	Turn-off-delay time			96	-	ns
t _f	Current fall time	$V_{CE} = 400 \text{ V}, I_{C} = 15 \text{ A}, V_{GE} = 15 \text{ V},$ $R_{G} = 12 \Omega, T_{J} = 175 ^{\circ}\text{C} \text{ (see } \textit{Figure 29: "}$ $\textit{Test circuit for inductive load switching")}$		169	-	ns
Eon	Turn-on switching energy	,		0.22	-	mJ
E _{off}	Turn-off switching energy			0.61	-	mJ
E _{ts}	Total switching energy			0.83	-	mJ
+	Short-circuit	$V_{CC} \le 400 \text{ V}, V_{GE} = 15 \text{ V}, T_{Jstart} = 150 \text{ °C}$	6		-	
	withstand time	V _{CC} ≤ 400 V, V _{GE} = 13 V, T _{Jstart} = 150 °C	10			μs
						_

Notes:

 $[\]ensuremath{^{(1)}}\xspace$ Including the reverse recovery of the diode.

 $[\]ensuremath{^{(2)}}\mbox{Including}$ the tail of the collector current.


Table 7: Diode switching characteristics (inductive load)


Symbol	Symbol Parameter Test conditions Min. Typ. Max					Unit
Зунион	Farameter	rest conditions	IVIIII.	ī yp.	wax.	Ullit
t _{rr}	Reverse recovery time		-	142	-	ns
Q _{rr}	Reverse recovery charge		-	525	-	nC
I _{rrm}	Reverse recovery current	I _F = 15 A, V _R = 400 V, V _{GE} = 15 V (see Figure 29: " Test circuit for inductive load switching")	-	13.4	-	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	di/dt = 1000 A/μs	-	790	-	A/μs
Err	Reverse recovery energy			64	1	μJ
t _{rr}	Reverse recovery time			241	ı	ns
Qrr	Reverse recovery charge		-	1690	-	nC
I _{rrm}	Reverse recovery current	I _F = 15 A, V _R = 400 V, V _{GE} = 15 V, T _J = 175 °C (see <i>Figure 29: " Test</i> circuit for inductive load switching")	-	20	-	Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	di/dt = 1000 A/μs	-	420	-	A/μs
Err	Reverse recovery energy		-	176	-	μJ

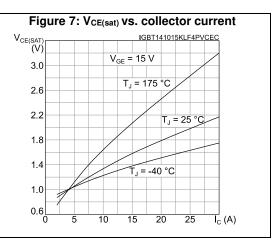

2.1 Electrical characteristics (curves)

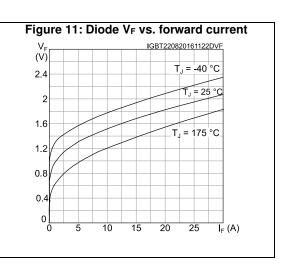
Figure 3: Collector current vs. case temperature

| Collector current vs. case temperature | IGBT141015KLF4PCCT |

10

10°

Figure 8: Collector current vs. switching frequency


| Collector current vs. switching frequency
| Gestingular current shape (duty cycle = 0.5, Vc. = 400 V, Ro. = 12 \Omega Vo. = 0.5 V. T. = 175 °C)
| Collector current vs. switching frequency
| Gestingular current shape (duty cycle = 0.5, Vc. = 400 V, Ro. = 12 \Omega Vo. = 0.5 V. T. = 175 °C)
| Collector current vs. switching frequency
| Gestingular current vs. switching frequency
| Gestingular current shape (duty cycle = 0.5, Vc. = 400 V, Ro. = 12 \Omega V. T. = 100 °C
| Tc = 100 °C | Tc = 80 °C | Tc = 100 °C | Tc = 10

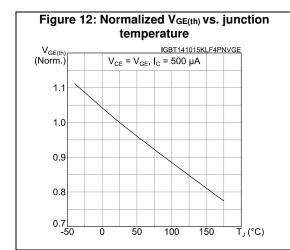

f (kHz)

Figure 9: Forward bias safe operating area $(A) = \frac{1}{10^{1}} \frac{(BT141015KLF4PFSOA)}{(A)} + \frac{1}{10^{1}} \frac{(B$

10

10²

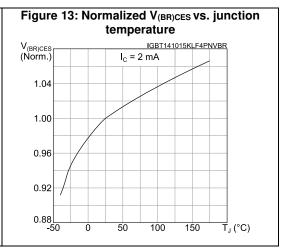


Figure 14: Capacitance variations

C
(pF)

103

102

Cess

101

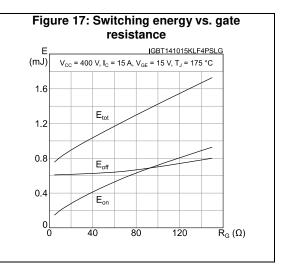
100

10-1

100

101

101


102

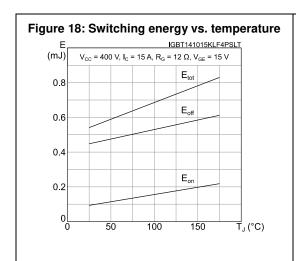
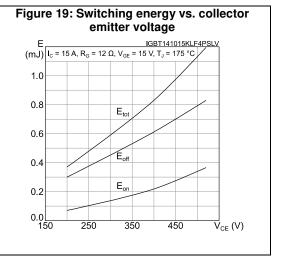
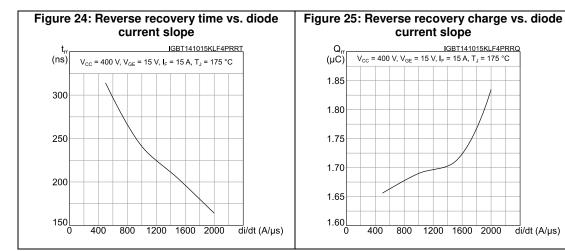

VcE(V)

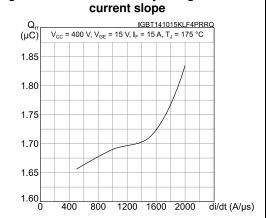
Figure 15: Gate charge vs. gate-emitter voltage

V_{GE} | IGBT141015KLF4PGCGE |
(V) | V_{CC} = 520 V, I_C = 15 A, I_G = 1 mA |

12 | 8 |
4 | 0 | 0 | 10 | 20 | 30 | 40 | Q_g (nC)




Figure 20: Short-circuit time and current vs. V_{GE} $\frac{\text{IGBT141015KLF4PSCV}}{\text{V}_{\text{CC}} \le 400 \text{ V}, \text{T}_{\text{J}} \le 150 \text{ °C}} \text{(A)}$ 20 90 16 75


Figure 21: Switching times vs. collector current $\frac{\text{IGBT141015KLF4PSTC}}{\text{V}_{\text{CC}} = 400 \text{ V}, \text{V}_{\text{GE}} = 15 \text{ V}, \text{R}_{\text{G}} = 12 \text{ }\Omega, \text{T}_{\text{J}} = 175 \text{ }^{\circ}\text{C}}$ 102 $t_{d(off)}$ $t_{d(on)}$ t_r 10¹ 10⁰ 20 30 15 25 $\mathsf{T}_{\mathsf{C}}(\mathsf{A})$

12 60 8 45 30 ___15 V_{GE}(V) 12 13 14

Figure 22: Switching times vs. gate resistance IGBT141015KLF4PSTR (ns) $V_{\rm CC}$ = 400 V, $V_{\rm GE}$ = 15 V, $I_{\rm C}$ = 15 A, $T_{\rm J}$ = 175 °C 10^{2} 10¹ 10°L 80 120 $R_{G}(\Omega)$

Figure 23: Reverse recovery current vs. diode current slope IGBT141015KLF4PRRC V_{CC} = 400 V, V_{GE} = 15 V, I_F = 15 A, T_J = 175 °C 38 34 30 26 22 18 14 1200 1600 2000 di/dt (A/µs)

STGP15M65DF2 Electrical characteristics

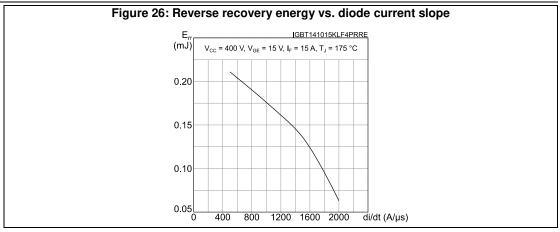
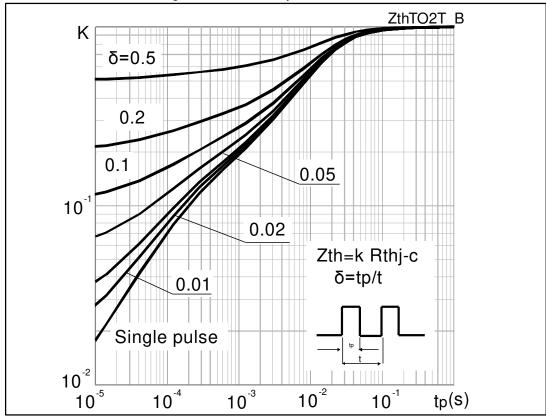
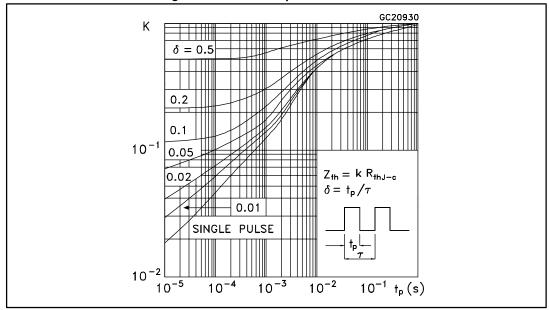
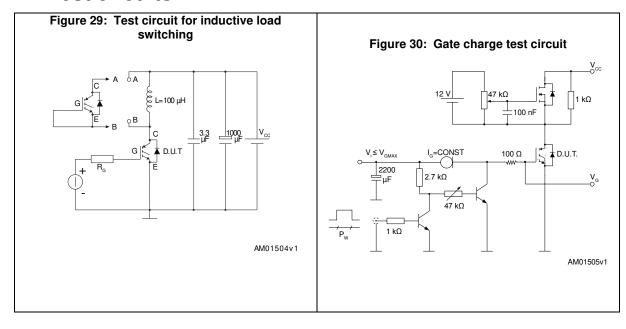
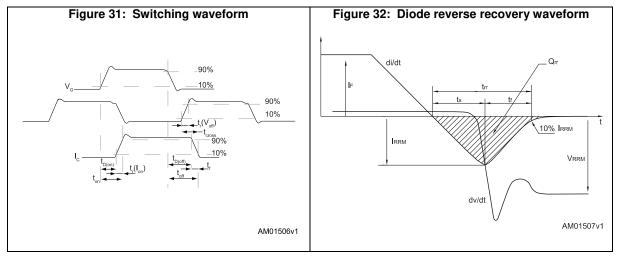


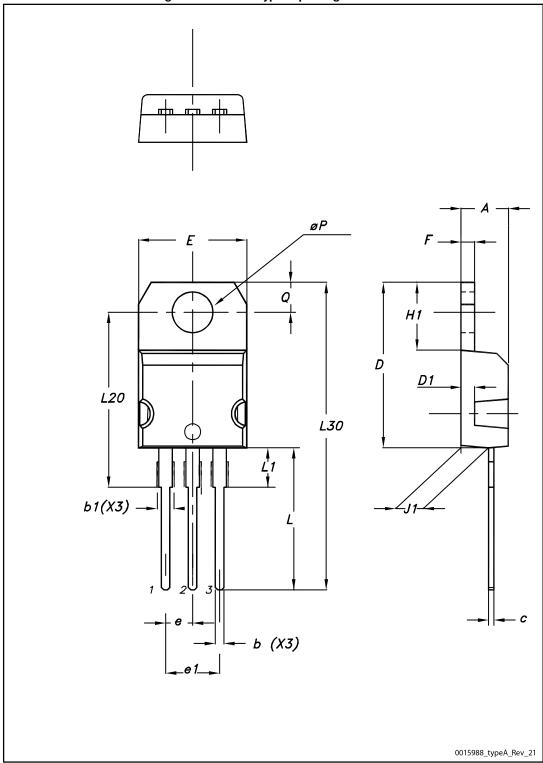
Figure 27: Thermal impedance for IGBT


Figure 28: Thermal impedance for diode

STGP15M65DF2 Test circuits

3 Test circuits


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STGP15M65DF2 Package information

4.1 TO-220 type A package information

Figure 33: TO-220 type A package outline

16/18

Table 8: TO-220 type A mechanical data

Dim.	,	mm	
Dilli.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

STGP15M65DF2 Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
14-Oct-2015	1	First release.
13-Nov-2015	2	Document status promoted from preliminary to production data.
22-Aug-2016	3	Updated Table 2: "Absolute maximum ratings" and Table 6: "IGBT switching characteristics (inductive load)". Updated Figure 16: "Switching energy vs. collector current", Figure 17: "Switching energy vs. gate resistance", Figure 18: "Switching energy vs. temperature" and Figure 19: "Switching energy vs. collector emitter voltage". Changed Figure 11: "Diode VF vs. forward current".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

