

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGP30H65F

Trench gate field-stop IGBT, H series 650 V, 30 A high speed

Datasheet - production data

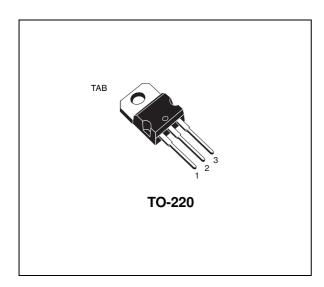
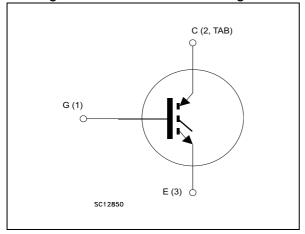



Figure 1. Internal schematic diagram

Features

- High speed switching
- Tight parameters distribution
- · Safe paralleling
- Low thermal resistance
- Short-circuit rated

Applications

- Inverter
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate and field stop structure. This IGBT series offers the optimum compromise between conduction and switching losses, maximizing the efficiency of very high frequency converters. Furthermore, a positive $V_{\text{CE}(\text{sat})}$ temperature coefficient and very tight parameter distribution result in easier paralleling operation.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STGP30H65F	GP30H65F	TO-220	Tube

Contents STGP30H65F

Contents

1	Electrical ratings 3
2	Electrical characteristics4
	2.1 Electrical characteristics (curves)
3	Test circuits9
4	Package mechanical data 10
5	Revision history12

STGP30H65F Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	650	V	
I _C	Continuous collector current at T _C = 25 °C	60	Α	
I _C	Continuous collector current at T _C = 100 °C	30	Α	
I _{CP} ⁽¹⁾	Pulsed collector current	120	Α	
V _{GE}	Gate-emitter voltage	±20	V	
P _{TOT}	Total dissipation at T _C = 25 °C	260	W	
T _{STG}	Storage temperature range	- 55 to 150	°C	
TJ	Operating junction temperature	- 55 to 175	, C	

^{1.} Pulse width limited by maximum junction temperature.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case	0.58	°C/W
R _{thJA}	R _{thJA} Thermal resistance junction-ambient		°C/W

Electrical characteristics STGP30H65F

2 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Table 4. Static

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage $(V_{GE} = 0)$	I _C = 2 mA	650			٧
		V _{GE} = 15 V, I _C = 30 A		2.0	2.4	V
V _{CE(sat)} Collector	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A T _J = 175 °C		2.4		٧
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5.0	6.0	7.0	٧
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 650 V			25	μΑ
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			250	nA

Table 5. Dynamic

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance			3600		pF
C _{oes}	Output capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GF} = 0$	-	130	-	pF
C _{res}	Reverse transfer capacitance	- GE -		65		pF
Q_g	Total gate charge	$V_{CC} = 400 \text{ V}, I_{C} = 30 \text{ A},$	-	105	-	nC
Q _{ge}	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 20: Gate charge</i>	-	30	-	nC
Q _{gc}	Gate-collector charge	test circuit)	-	35	-	nC

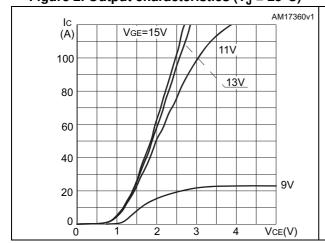
Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			50		ns
t _r	Current rise time	$V_{CE} = 400 \text{ V}, I_{C} = 30 \text{ A},$ $R_{G} = 10 \Omega, V_{GF} = 15 \text{ V}$	-	15	-	ns
(di/dt) _{on}	Turn-on current slope			1600		A/μs
t _{d(on)}	Turn-on delay time	$V_{CE} = 400 \text{ V}, I_{C} = 30 \text{ A},$		47		ns
t _r	Current rise time	$R_G = 10 \Omega$, $V_{GE} = 15 V$	-	17	-	ns
(di/dt) _{on}	Turn-on current slope	T _J = 175 °C		1400		A/μs
$t_r(V_{off})$	Off voltage rise time			20		ns
t _d (_{off})	Turn-off delay time	$V_{CE} = 400 \text{ V}, I_{C} = 30 \text{ A},$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V}$	-	160	-	ns
t _f	Current fall time			60		ns
$t_r(V_{off})$	Off voltage rise time	$V_{CF} = 400 \text{ V}, I_{C} = 30 \text{ A},$		22		ns
t _d (_{off})	Turn-off delay time	$R_G = 10 \Omega$, $V_{GE} = 15 V$	-	146	-	ns
t _f	Current fall time	T _J = 175 °C		88		ns
t _{sc}	Short circuit withstand time	$V_{CC} \le 360 \text{ V}, V_{GE} = 15 \text{ V}$	3	6	-	μs

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Eon (1)	Turn-on switching losses	$V_{CE} = 400 \text{ V}, I_{C} = 30 \text{ A},$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V}$	-	0.35	-	mJ
E _{off} ⁽²⁾	Turn-off switching losses		-	0.40	-	mJ
E _{ts}	Total switching losses		-	0.75	-	mJ
Eon (1)	Turn-on switching losses	$V_{CE} = 400 \text{ V}, I_{C} = 30 \text{ A},$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V}$ $T_{J} = 175 \text{ °C}$	-	0.61	-	mJ
E _{off} ⁽²⁾	Turn-off switching losses		-	0.84	-	mJ
E _{ts}	Total switching losses		-	1.45	-	mJ

^{1.} Energy losses include reverse recovery of the external diode. The diode is the same of the co-packed STGP30H60DF.


^{2.} Turn-off losses include also the tail of the collector current.

Electrical characteristics STGP30H65F

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics ($T_J = 25$ °C)

Figure 3. Output characteristics $(T_J = 175^{\circ}C)$

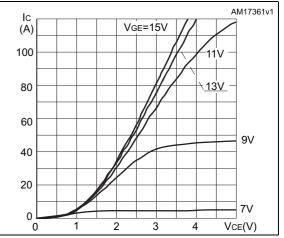
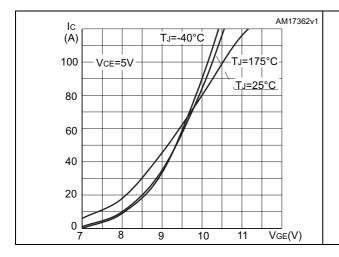



Figure 4. Transfer characteristics

Figure 5. Normalized $V_{GE(th)}$ vs. junction temperature

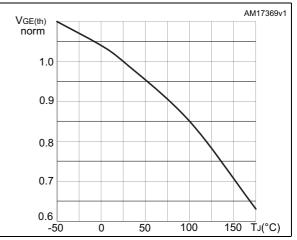
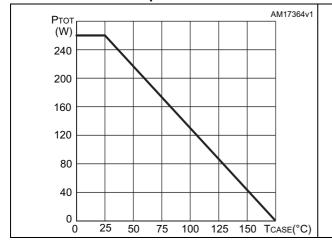



Figure 6. Power dissipation vs. case temperature

Figure 7. Collector current vs. frequency

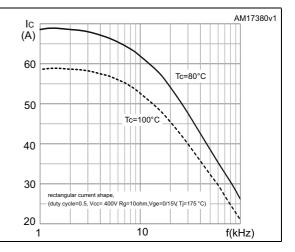


Figure 8. V_{CE(sat)} vs. junction temperature

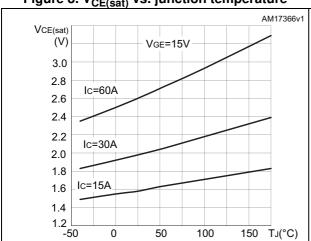


Figure 9. V_{CE(sat)} vs. collector current

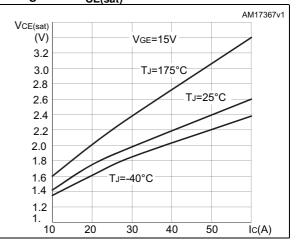


Figure 10. Forward bias safe operating area

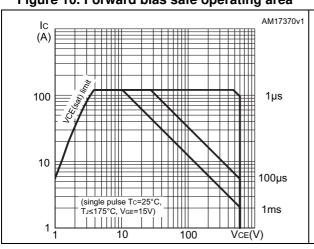


Figure 11. Thermal impedance

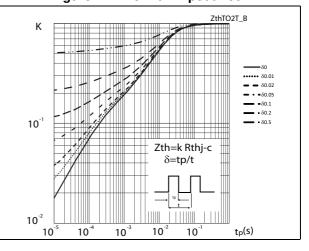
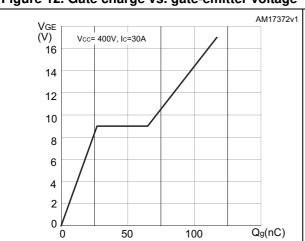
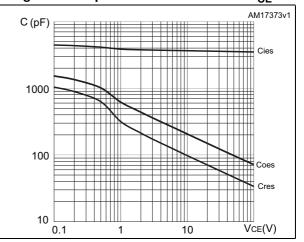
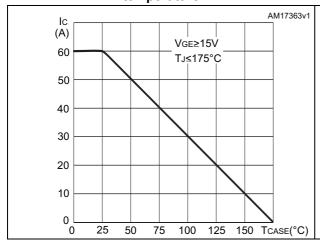


Figure 12. Gate charge vs. gate-emitter voltage


Figure 13. Capacitance variations vs. V_{CE}

Electrical characteristics STGP30H65F

Figure 14. Collector current vs. case temperature

Figure 15. Switching losses vs. gate resistance

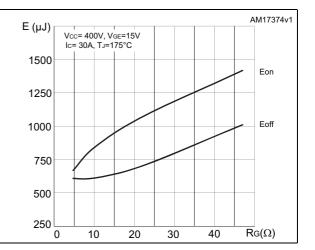
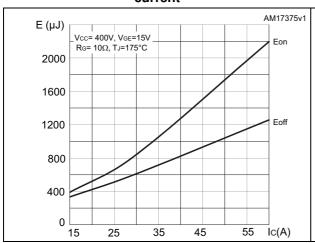



Figure 16. Switching losses vs. collector current

Figure 17. Switching losses vs temperature

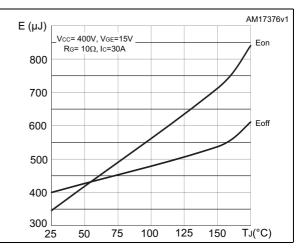
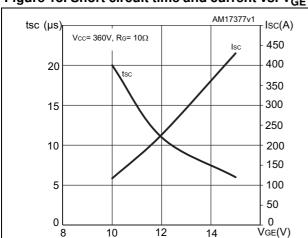



Figure 18. Short circuit time and current vs. $V_{\rm GE}$

STGP30H65F Test circuits

3 Test circuits

Figure 19. Test circuit for inductive load switching

Figure 20. Gate charge test circuit

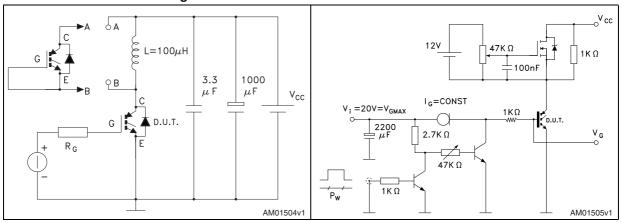
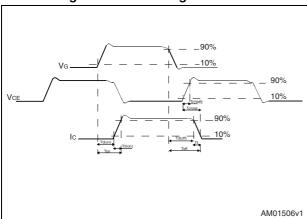



Figure 21. Switching waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

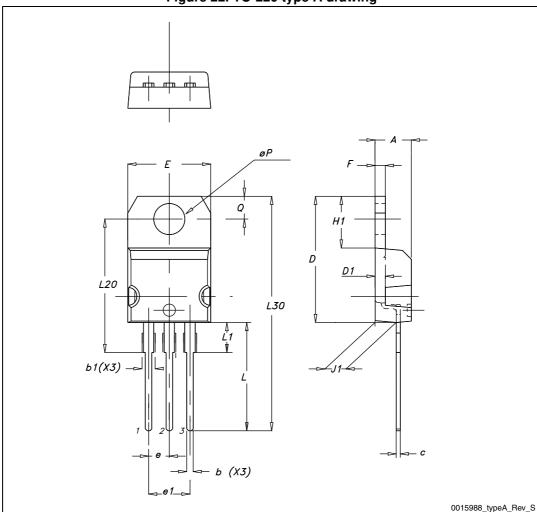


Figure 22. TO-220 type A drawing

Table 8. TO-220 type A mechanical data

Dim	10010 01 10 ==	mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Revision history STGP30H65F

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
16-Dec-2013	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

