imall

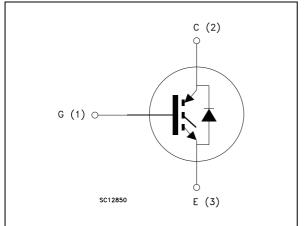
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


STGW15H120DF2, STGWA15H120DF2

Datasheet - production data

Trench gate field-stop IGBT, H series 1200 V, 15 A high speed

TO-247 TO-247 long leads

Figure 1. Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- V_{CE(sat)} = 2.1 V (typ.) @ I_C = 15 A
- 5 μ s minimum short circuit withstand time at T_J=150 °C
- Safe paralleling
- Very fast recovery antiparallel diode
- Low thermal resistance

Applications

- Uninterruptible power supply
- Welding machines
- Photovoltaic inverters
- Power factor correction
- High frequency converters

Description

These devices are IGBTs developed using an advanced proprietary trench gate field-stop structure. These devices are part of the improved H series of IGBTs, which represent an optimum compromise between conduction and switching losses to maximize the efficiency of high frequency converters. Furthermore, a slightly positive $V_{CE(sat)}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1. Device summary

Order code	Marking	Package	Packaging
STGW15H120DF2	G15H120DF2	TO-247	Tube
STGWA15H120DF2	G15H120DF2	TO-247 long leads	Tube

DocID023751 Rev 5

1/18

Contents

1	Electrical ratings 3
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data
	4.1 TO-247, STGW15H120DF2 13 4.2 TO-247 long leads, STGWA15H120DF2 15
5	Revision history

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	1200	V
	Continuous collector current at $T_C = 25 \text{ °C}$	30	Α
Ι _C	Continuous collector current at $T_c = 100 \text{ °C}$	15	Α
I _{CP} ⁽¹⁾	Pulsed collector current	60	А
V _{GE}	Gate-emitter voltage	±20	V
	Continuous collector current at $T_{C} = 25 \text{ °C}$	30	Α
١ _F	Continuous collector current at T _C = 100 °C	15	Α
I _{FP} ⁽¹⁾	Pulsed forward current	60	Α
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	259	W
T _{STG}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature	-55 to 175	°C

Table 2. Absolute maximum ratings

1. Pulse width limited by maximum junction temperature.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case IGBT	0.58	°C/W
R _{thJC}	Thermal resistance junction-case diode	1.47	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

2 Electrical characteristics

 $T_J = 25 \text{ °C}$ unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage $(V_{GE} = 0)$	I _C = 2 mA	1200			V
		V _{GE} = 15 V, I _C = 15 A		2.1	2.6	
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 15 A T _J = 125 °C		2.4		v
		V _{GE} = 15 V, I _C = 15 A T _J = 175 °C		2.5		
		I _F = 15 A		3.5	4.4	
V _F	Forward on-voltage	I _F = 15 A, T _J = 125 °C		2.6		V
		I _F = 15 A, T _J = 175 °C		2.2		
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 500 \ \mu A$	5	6	7	V
I _{CES}	Collector cut-off current $(V_{GE} = 0)$	V _{CE} = 1200 V			25	μΑ
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			250	nA

Table 4	. Static	characteristics
	· otatic	characteristics

Table 5. Dynamic characteristics

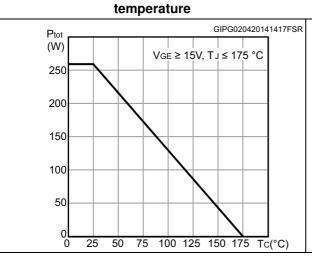
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	1300	-	pF
C _{oes}	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0	-	105	-	pF
C _{res}	Reverse transfer capacitance		-	32	-	pF
Qg	Total gate charge		-	67	-	nC
Q _{ge}	Gate-emitter charge	V _{CC} = 960 V, I _C = 15 A, V _{GE} = 15 V, see <i>Figure 29</i>	-	8	-	nC
Q _{gc}	Gate-collector charge		-	38	-	nC

Symbol	Parameter	Test conditions	Min.	, Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	23	-	ns
t _r	Current rise time		-	7.4	-	ns
(di/dt) _{on}	Turn-on current slope		-	1621	-	A/µs
t _{d(off)}	Turn-off delay time	$V_{CE} = 600 \text{ V}, I_C = 15 \text{ A},$		111	-	ns
t _f	Current fall time	R _G = 10 Ω, V _{GE} = 15 V, see <i>Figure 28</i>	-	111	-	ns
$E_{on}^{(1)}$	Turn-on switching losses	<u><u></u></u>	-	0.38	-	mJ
$E_{off}^{(2)}$	Turn-off switching losses	$V_{CE} = 600 \text{ V}, \text{ I}_{C} = 15 \text{ A},$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{J} = 175 \text{ °C}, \text{ see } Figure 28$	-	0.37	-	mJ
E _{ts}	Total switching losses		-	0.75	-	mJ
t _{d(on)}	Turn-on delay time		-	23.5	-	ns
t _r	Current rise time		-	8	-	ns
(di/dt) _{on}	Turn-on current slope		-	1525	-	A/µs
t _{d(off)}	Turn-off delay time		-	118	-	ns
t _f	Current fall time		-	253	-	ns
$E_{on}^{(1)}$	Turn-on switching losses		-	0.65	-	mJ
$E_{off}^{(2)}$	Turn-off switching losses		-	0.93	-	mJ
E _{ts}	Total switching losses		-	1.58	-	mJ
t _{sc}	Short-circuit withstand time	V _{CE} = 600 V, V _{GE} = 15 V, T _J = 150 °C,	5		-	μs

1. Energy losses include reverse recovery of the external diode.

2. Turn-off losses include also the tail of the collector current.

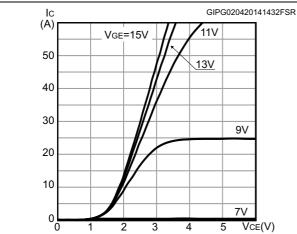
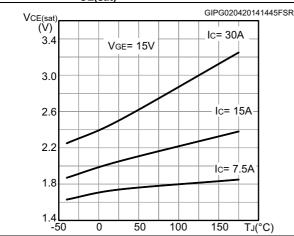
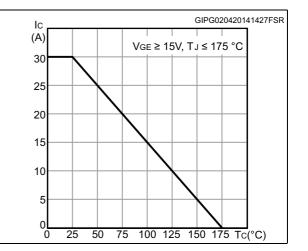
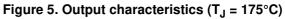
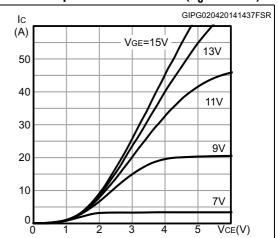
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	231	-	ns
Q _{rr}	Reverse recovery charge	I _F = 15 A, V _B = 600 V,	-	0.72	-	μC
I _{rrm}	Reverse recovery current	di/dt=1000 Å/µs,	-	14.5	-	А
dI _{rr/} /dt	Peak rate of fall of reverse recovery current during t_b	$V_{GE} = 15 \text{ V},$ see <i>Figure 28</i> $I_F = 15 \text{ A}, V_R = 600 \text{ V},$ di/dt=1000 A/µs, $V_{GE} = 15 \text{ V}, T_J = 175 \text{ °C},$ see <i>Figure 28</i>	-	1200	-	A∕µs
E _{rr}	Reverse recovery energy		-	0.4	-	mJ
t _{rr}	Reverse recovery time		-	414	-	ns
Q _{rr}	Reverse recovery charge		-	2.2	-	μC
I _{rrm}	Reverse recovery current		-	21.5	-	А
dI _{rr/} /dt	Peak rate of fall of reverse recovery current during t _b		-	632	-	A∕µs
E _{rr}	Reverse recovery energy		-	1.3	-	mJ

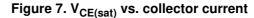

Table 7. Diode	switching	characteristics	(ind	uctive	load)

2.1 Electrical characteristics (curves)

Figure 2. Power dissipation vs. case

Figure 3. Collector current vs. case temperature


Figure 6. V_{CE(sat)} vs. junction temperature

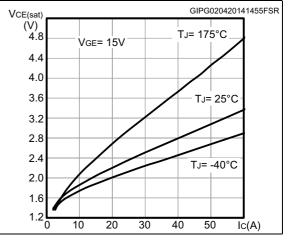


Figure 8. Collector current vs. switching frequency

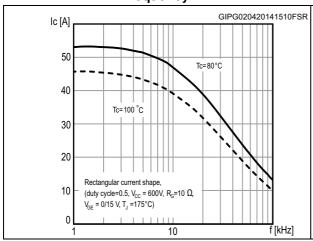


Figure 10. Transfer characteristics

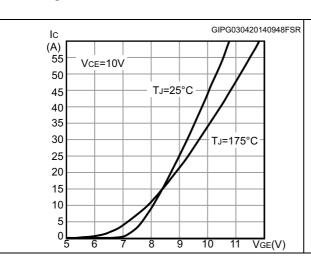


Figure 12. Normalized V_{(BR)CES} vs. junction temperature

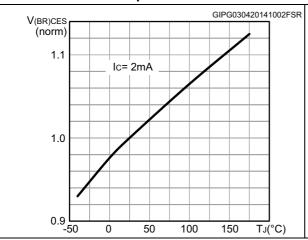


Figure 9. Forward bias safe operating area

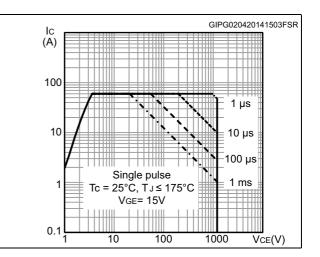


Figure 11. Normalized V_{GE(th)} vs junction temperature

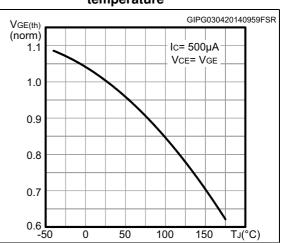
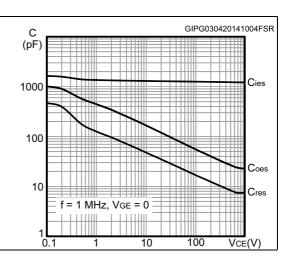



Figure 13. Capacitance variation

Figure 14. Gate charge vs. gate-emitter voltage Figure 15. Switching loss vs collector current

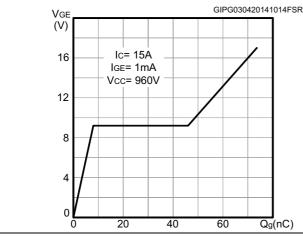


Figure 16. Switching loss vs gate resistance

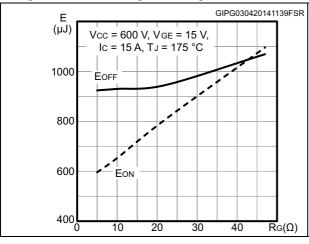


Figure 18. Switching loss vs collector-emitter voltage

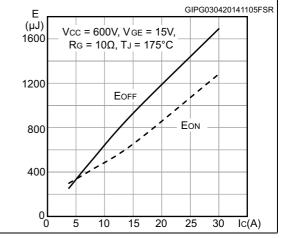
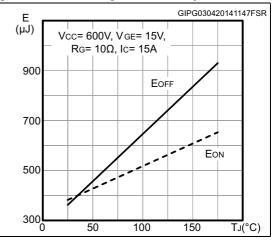
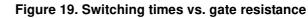





Figure 17. Switching loss vs temperature

GIPG030420141413FSR

Figure 20. Switching times vs. collector current

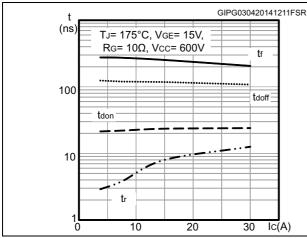


Figure 22. Reverse recovery current vs. diode current slope

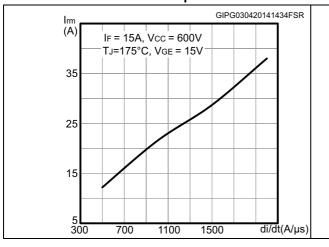


Figure 24. Reverse recovery charge vs. diode current slope

IF = 15A, Vcc = 600V

TJ=175°C, VGE = 15V

1500

Qrr (nC)

2300

2100

1900

1700 L 300

700

1100

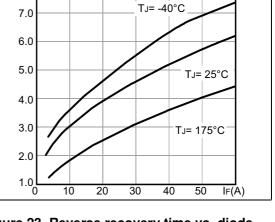
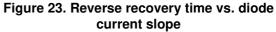



Figure 21. Diode V_F vs. forward current

VF (V

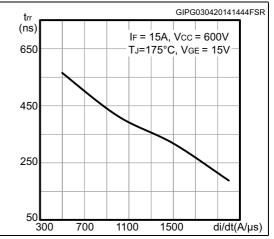
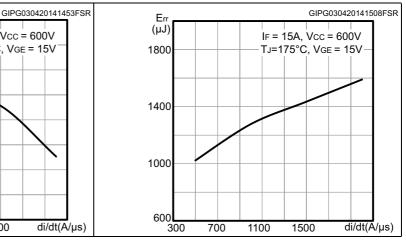



Figure 25. Reverse recovery energy vs. diode current slope

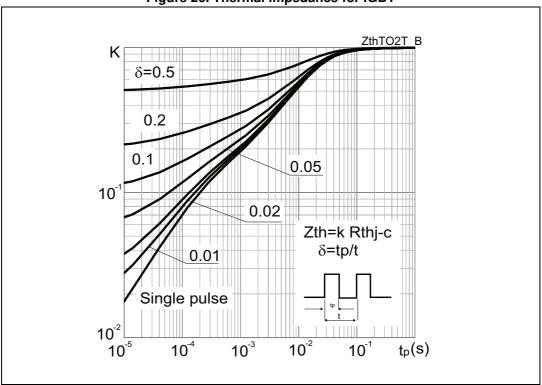
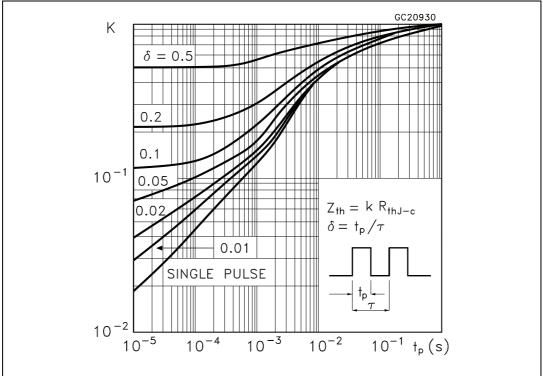



Figure 26. Thermal impedance for IGBT

DocID023751 Rev 5

3 Test circuits

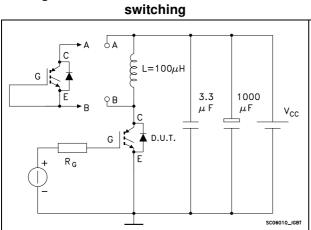


Figure 28. Test circuit for inductive load

Figure 30. Switching waveform

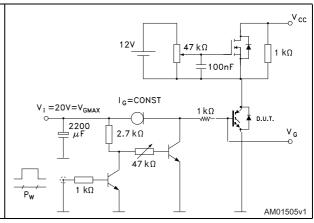
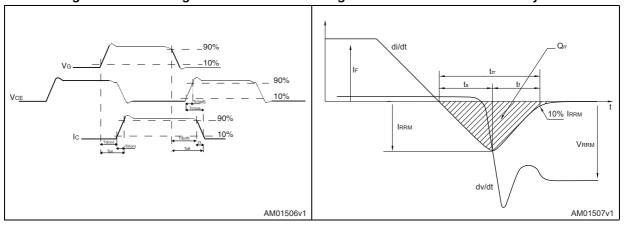
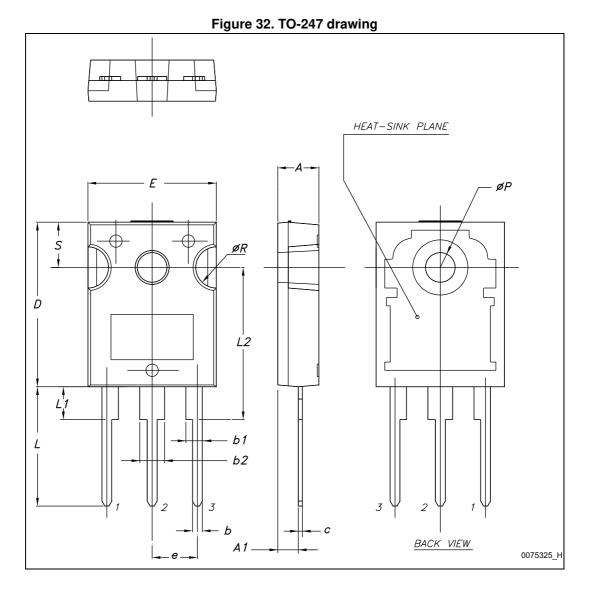



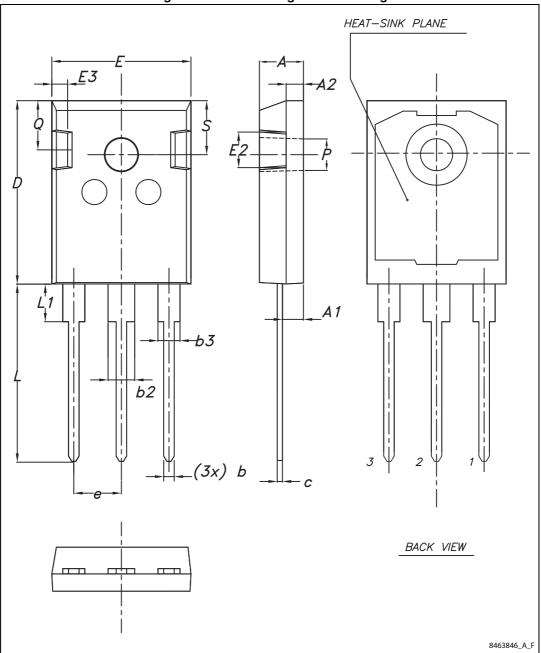
Figure 29. Gate charge test circuit


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

12/18

4.1 TO-247, STGW15H120DF2



Dim.	mm.				
	Min.	Тур.	Max.		
А	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
е	5.30	5.30 5.45			
L	14.20 14.80		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50	4.50 5.50			
S	5.30	5.50	5.70		

Table 8. TO-247 mechanical data

4.2 TO-247 long leads, STGWA15H120DF2

Figure 33. TO-247 long leads drawing

Table 9. TO-247 long leads mechanical data					
Dim. —	mm				
	Min.	Тур.	Max.		
А	4.90	5.00	5.10		
A1	2.31	2.41	2.51		
A2	1.90	2.00	2.10		
b	1.16		1.26		
b2		3.25			
b3			2.25		
С	0.59		0.66		
D	20.90	21.00	21.10		
E	15.70	15.80	15.90		
E2	4.90	5.00	5.10		
E3	2.40	2.50	2.60		
е	5.34	5.44	5.54		
L	19.80	19.92	20.10		
L1			4.30		
Р	3.50 3.60		3.70		
Q	5.60		6.00		
S	6.05	6.15	6.25		

Table 9. TO-247 long leads mechanical data

5 Revision history

Date	Revision	Changes	
03-Oct-2012	1	Initial release.	
03-Mar-2014	2	Updated title and features in cover page. Updated <i>Section 4: Package mechanical data.</i> Minor text changes.	
08-Apr-2014	3	Added <i>Section 2.1: Electrical characteristics (curves).</i> Minor text changes.	
29-Jan-2015	4	Added 4.2: TO-247 long leads, STGWA15H120DF2. Updated Figure 29.: Gate charge test circuit. Updated Figure 30.: Switching waveform and Figure 31.: Diode reverse recovery waveform. Minor text changes.	
04-Mar-2015	5	Updated <i>Figure 5.: Output characteristics</i> ($T_J = 175^{\circ}C$) Minor text changes.	

Table 10. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID023751 Rev 5

