

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# STGW20NB60KD

# N-CHANNEL 20A - 600V TO-247 SHORT CIRCUIT PROOF PowerMESH™ IGBT

**Table 1: General Features** 

| TYPE         | V <sub>CES</sub> | V <sub>CE(sat)</sub> (Max)<br>@25°C | <b>lc</b><br>@100°C |
|--------------|------------------|-------------------------------------|---------------------|
| STGW20NB60KD | 600 V            | < 2.8 V                             | 25 A                |

- OFF LOSSES INCLUDE TAIL CURRENT
- HIGH CURRENT CAPABILITY
- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP (V<sub>cesat</sub>)
- LOW ON-LOSSES
- LOW GATE CHARGE
- VERY HIGH FREQUENCY OPERATION
- SHORT CIRCUIT RATED
- LATCH CURRENT FREE OPERATION

#### **DESCRIPTION**

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The suffix "K" identifies a family optimized for high frequency motor control applications with short circuit withstand capability.

#### **APPLICATIONS**

- HIGH FREQUENCY MOTOR CONTROLS
- U.P.S
- WELDING EQUIPMENTS

Figure 1: Package



Figure 2: Internal Schematic Diagram

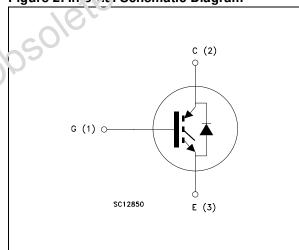



Table 2: Order Codes

| SALES TYPE   | SALES TYPE MARKING |        | PACKAGING |
|--------------|--------------------|--------|-----------|
| STGW20NB60KD | GW20NB60KD         | TO-247 | TUBE      |

May 2005 1/11

**Table 3: Absolute Maximum ratings** 

| Symbol              | Parameter                                       | Value       | Unit |  |
|---------------------|-------------------------------------------------|-------------|------|--|
| V <sub>CES</sub>    | Collector-Emitter Voltage (V <sub>GS</sub> = 0) | 600         | V    |  |
| V <sub>ECR</sub>    | Reverse Battery Protection                      | 20          | V    |  |
| V <sub>GE</sub>     | Gate-Emitter Voltage                            | ± 20        | V    |  |
| I <sub>C</sub>      | Collector Current (continuous) at 25°C (#)      | 50          | А    |  |
| IC                  | Collector Current (continuous) at 100°C (#)     | 25          | А    |  |
| I <sub>CM</sub> (1) | Collector Current (pulsed)                      | 100         | А    |  |
| T <sub>SC</sub>     | Short Circuit Withstand                         | 10          | μs   |  |
| P <sub>TOT</sub>    | Total Dissipation at T <sub>C</sub> = 25°C      | 170         | W    |  |
|                     | Derating Factor                                 | 1.2         | W/°C |  |
| T <sub>stg</sub>    | Storage Temperature                             | - 55 to 150 | °C   |  |
| Tj                  | Operating Junction Temperature                  | - 55 to 150 |      |  |

<sup>(1)</sup>Pulse width limited by max. junction temperature.

### **Table 4: Thermal Data**

| Ì |           |                                     | Min. | Тур. | Max. |      |
|---|-----------|-------------------------------------|------|------|------|------|
|   | Rthj-case | Thermal Resistance Junction-case    |      | 7//  | 0.73 | °C/W |
|   | Rthj-amb  | Thermal Resistance Junction-ambient |      | 02   | 50   | °C/W |

## Electrical Characteristics (T<sub>case</sub> =25°C unless otherwise specified)

### Table 5: Off

| Symbol               | Parameter                                                  | Test Conditions                                     | Min. | Тур. | Max.      | Unit                     |
|----------------------|------------------------------------------------------------|-----------------------------------------------------|------|------|-----------|--------------------------|
| V <sub>BR(CES)</sub> | Collectro-Emitter Breakdown<br>Voltage                     | $I_C = 250 \mu A, V_{GE} = 0$                       | 600  |      |           | V                        |
| Ices                 | Collector-Emitter Leakage<br>Current (V <sub>CE</sub> = 0) | V <sub>GE</sub> = Max Rating<br>Tc=25°C<br>Tc=125°C |      |      | 10<br>100 | μ <b>Α</b><br>μ <b>Α</b> |
| I <sub>GES</sub>     | Gate-Emitter Leakage<br>Current (V <sub>CE</sub> = 0)      | $V_{GE} = \pm 20 \text{ V}$ , $V_{CE} = 0$          |      |      | ± 100     | nA                       |

## Table 6: On

| Symbol               | Parameter                               | Test Conditions                                                                                                      | Min. | Тур.       | Max. | Unit   |
|----------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|------------|------|--------|
| V <sub>GE(th)</sub>  | Gate Threshold Voltage                  | $V_{CE}=V_{GE}, I_{C}=250 \mu A$                                                                                     | 5    |            | 7    | V      |
| V <sub>CE(SAT)</sub> | Collector-Emitter Saturation<br>Voltage | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 20A, Tj= 25°C<br>V <sub>GE</sub> = 15 V, I <sub>C</sub> = 20A,<br>Tj= 125°C |      | 2.3<br>1.9 | 2.8  | V<br>V |

<sup>(#)</sup> Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

2/11

### **ELECTRICAL CHARACTERISTICS** (CONTINUED)

Table 7: Dynamic

| Symbol                                                   | Parameter                                                                  | Test Conditions                                                                                      | Min. | Тур.              | Max. | Unit           |
|----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------|-------------------|------|----------------|
| 9fs                                                      | Forward Transconductance                                                   | V <sub>CE</sub> = 25 V <sub>,</sub> I <sub>C</sub> = 20 A                                            |      | 8                 |      | S              |
| C <sub>ies</sub><br>C <sub>oes</sub><br>C <sub>res</sub> | Input Capacitance<br>Output Capacitance<br>Reverse Transfer<br>Capacitance | out Capacitance<br>erse Transfer                                                                     |      | 1560<br>190<br>38 |      | pF<br>pF<br>pF |
| Q <sub>g</sub><br>Q <sub>ge</sub><br>Q <sub>gc</sub>     | Total Gate Charge<br>Gate-Emitter Charge<br>Gate-Collector Charge          | $V_{CE} = 480 \text{ V}, I_{C} = 20 \text{ A},$<br>$V_{GE} = 15 \text{ V},$<br>(see Figure 19)       |      | 85<br>14.4<br>51  | 115  | nC<br>nC<br>nC |
| tscw                                                     | Short Circuit Withstand Time                                               | $V_{ce} = 0.5 \text{ BV}_{ces}$ , Tj = 125°C<br>R <sub>G</sub> = 10 $\Omega$ , V <sub>GE</sub> = 15V | 10   |                   |      | μs             |

### Table 8: Switching On

| Symbol                               | Parameter                                      | Test Conditions                                                                                                                   | Min. | Тур.       | Max. | Unit       |
|--------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|------------|------|------------|
| t <sub>d(on)</sub><br>t <sub>r</sub> | Turn-on Delay Time<br>Current Rise Time        | $V_{CC} = 480 \text{ V, } I_{C} = 20 \text{ A}$ $R_{G} = 10\Omega, V_{GE} = 15\text{V, } Tj = 25^{\circ}\text{C}$ (see Figure 17) |      | 39<br>35   | Cili | ns<br>ns   |
| (di/dt) <sub>on</sub><br>Eon (2)     | Turn-on Current Slope Turn-on Switching Losses | $V_{CC} = 480 \text{ V, } I_{C} = 20 \text{ A}$ $R_{G} = 10\Omega, V_{GE} = 15\text{V, Tj} = 125^{\circ}\text{C}$ (see Figure 17) | 01   | 453<br>675 |      | A/μs<br>μJ |

<sup>2)</sup> Eon is the turn-on losses when a typical diode is used in the test circuit in Figure 17. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode.

**Table 9: Switching Off** 

| Symbol               | Parameter               | Test Conditions                                            | Min. | Тур. | Max. | Unit |
|----------------------|-------------------------|------------------------------------------------------------|------|------|------|------|
| $t_r(V_{off})$       | Off Voltage Rise Time   | $V_{CC} = 480 \text{ V}, I_{C} = 20 \text{ A},$            |      | 25   |      | ns   |
| t <sub>c</sub>       | Cross-over Time         | $R_{GE} = 10 \Omega$ , $V_{GE} = 15 V$<br>$T_{.1} = 25 °C$ |      | 160  |      | ns   |
| $t_{d(off)}$         | Turn-off Delay Time     | (see Figure 17)                                            |      | 105  |      | ns   |
| t <sub>f</sub>       | Current Fall Time       | 01                                                         |      | 95   |      | ns   |
| E <sub>off</sub> (3) | Turn-off Switching Loss |                                                            |      | 0.5  |      | mJ   |
| E <sub>ts</sub>      | Total Switching Loss    |                                                            |      | 0.9  |      | mJ   |
| $t_r(V_{Off})$       | Off Voltage Rise Time   | $V_{CC} = 480 \text{ V}, I_{C} = 20 \text{ A},$            |      | 46   |      | ns   |
| t <sub>c</sub>       | Cross-over Time         | $R_{GE} = 10 \Omega$ , $V_{GE} = 15 V$<br>$T_{I} = 125 °C$ |      | 175  |      | ns   |
| t <sub>d</sub> (off) | Turn-off Delay Time     | (see Figure 17)                                            |      | 130  |      | ns   |
| t <sub>f</sub>       | Current Fall Time       |                                                            |      | 150  |      | ns   |
| E <sub>off</sub> (3) | Turn-off Switching Loss |                                                            |      | 0.70 |      | mJ   |
| Ets                  | Total Switching Loss    |                                                            |      | 1.35 |      | mJ   |

<sup>(3)</sup> Turn-off losses include also the tail of the collector current.

**477**.

**Table 10: Collector-Emitter Diode** 

| Symbol                                                 | Parameter                                                                    | Test Conditions                                                                   | Min. | Тур.               | Max.     | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------|--------------------|----------|---------------|
| I <sub>f</sub><br>I <sub>fm</sub>                      | Forward Current<br>Forward Current pulsed                                    |                                                                                   |      |                    | 20<br>80 | A<br>A        |
| V <sub>f</sub>                                         | Forward On-Voltage                                                           | I <sub>f</sub> = 10 A<br>I <sub>f</sub> = 10 A, Tj = 125 °C                       |      | 1.27<br>1          | 2.0      | V<br>V        |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>rrm</sub> | Reverse Recovery Time<br>Reverse Recovery Charge<br>Reverse Recovery Current | $I_f$ = 10 A , $V_R$ = 27 V,<br>Tj =125°C, di/dt = 100 A/ $\mu$ s (see Figure 20) |      | 80.5<br>181<br>4.5 |          | ns<br>nC<br>A |

Obsolete Product(s) - Obsolete Product(s)

Figure 3: Output Characteristics

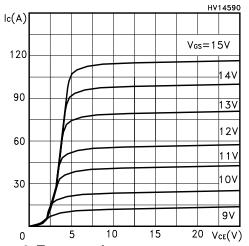



Figure 4: Transconductance

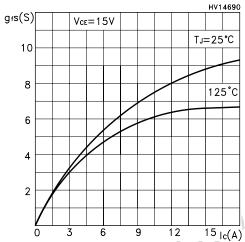
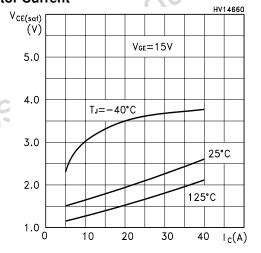




Figure 5: Collector-Emitter On Voltage vs Collector Current



**Figure 6: Transfer Characteristics** 

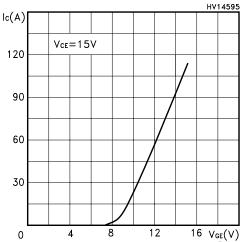



Figure 7: Collector-Emitter On Voltage vs Temperature

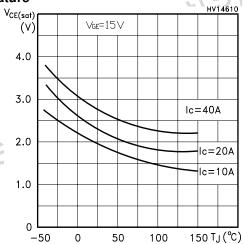



Figure 8: Normalized Gate Threshold vs Temperature

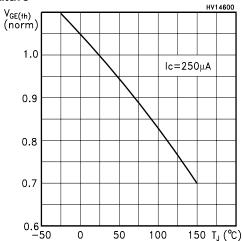



Figure 9: Normalized Breakdown Voltage vs Temperature

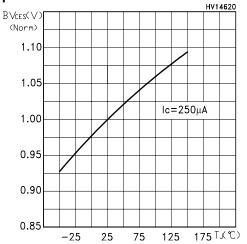



Figure 10: Capacitance Variations

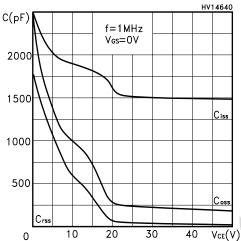



Figure 11: Turn-Off Energy Losses vs Temperature

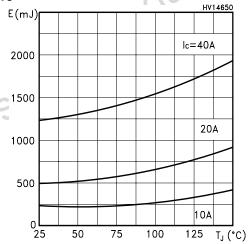



Figure 12: Gate Charge vs Gate-Emitter Voltage

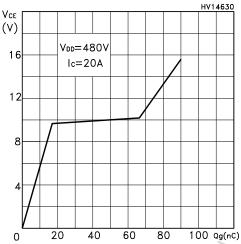



Figure 13: Diode Forward Voltage

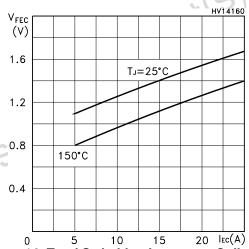
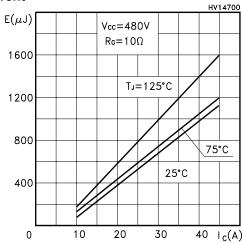




Figure 14: Total Switching Losses vs Collector Current



**477**.

Figure 15: Thermal Impedance

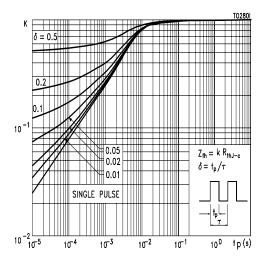



Figure 16: Turn-Off SOA

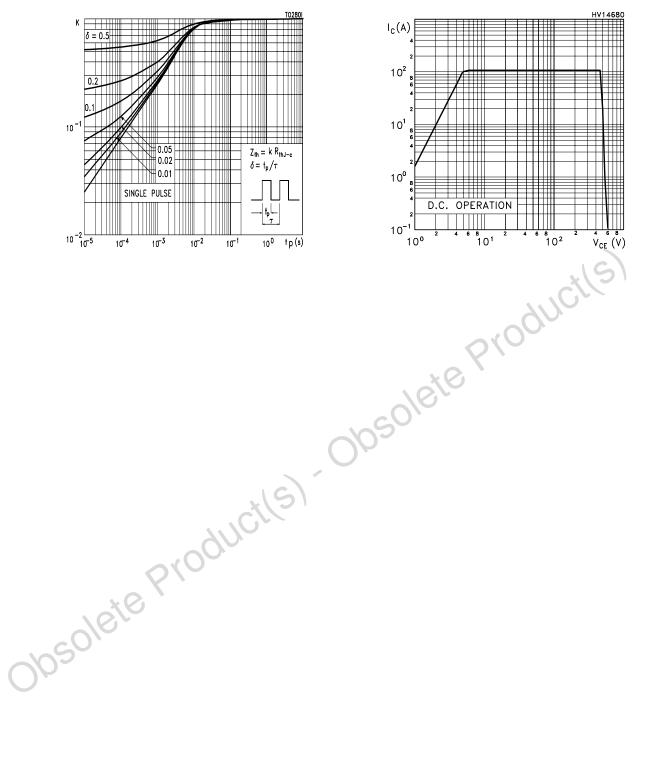



Figure 17: Test Circuit for Inductive Load Switching

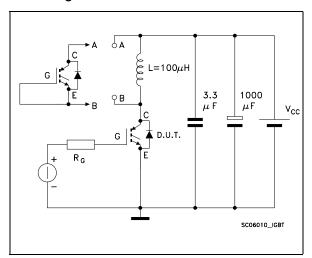



Figure 18: Switching Waveforms

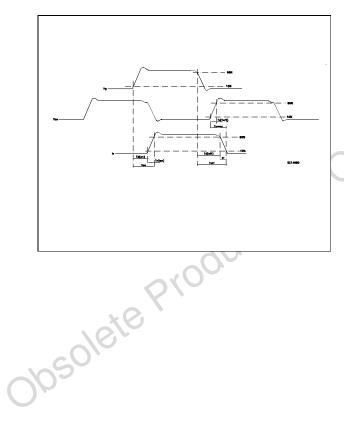



Figure 19: Gate Charge Test Circuit

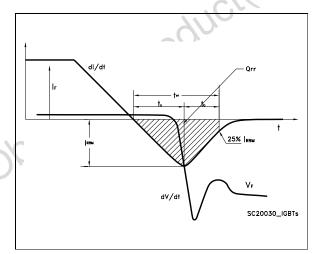




Figure 20: Diode Recovery Times Waveform



**57**.

## **TO-247 MECHANICAL DATA**

| DIM  |       | mm.   |       |       | inch  |       |
|------|-------|-------|-------|-------|-------|-------|
| DIM. | MIN.  | TYP   | MAX.  | MIN.  | TYP.  | MAX.  |
| Α    | 4.85  |       | 5.15  | 0.19  |       | 0.20  |
| A1   | 2.20  |       | 2.60  | 0.086 |       | 0.102 |
| b    | 1.0   |       | 1.40  | 0.039 |       | 0.055 |
| b1   | 2.0   |       | 2.40  | 0.079 |       | 0.094 |
| b2   | 3.0   |       | 3.40  | 0.118 |       | 0.134 |
| С    | 0.40  |       | 0.80  | 0.015 |       | 0.03  |
| D    | 19.85 |       | 20.15 | 0.781 |       | 0.793 |
| E    | 15.45 |       | 15.75 | 0.608 |       | 0.620 |
| е    |       | 5.45  |       |       | 0.214 |       |
| L    | 14.20 |       | 14.80 | 0.560 |       | 0.582 |
| L1   | 3.70  |       | 4.30  | 0.14  |       | 0.17  |
| L2   |       | 18.50 |       |       | 0.728 |       |
| øΡ   | 3.55  |       | 3.65  | 0.140 |       | 0.143 |
| øR   | 4.50  |       | 5.50  | 0.177 |       | 0.216 |
| S    |       | 5.50  |       |       | 0.216 |       |

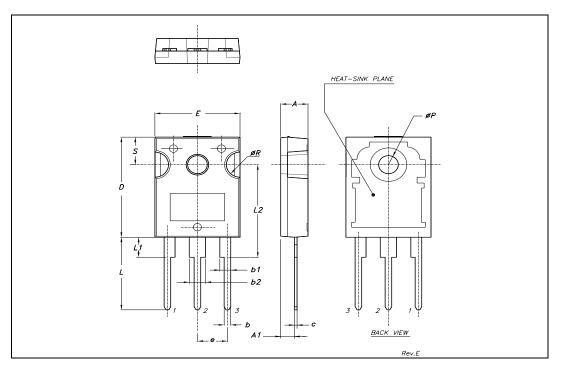



Table 11: Revision History

| Date Revision Description of Changes |   | Description of Changes                              |
|--------------------------------------|---|-----------------------------------------------------|
| 21-Mar-2005                          | 2 | New stylesheet. Some value changed on Table 3 and 4 |
| 05-Apr-2005                          | 3 | New updated values in table 3                       |



10/11

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

