imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed

Datasheet - production data

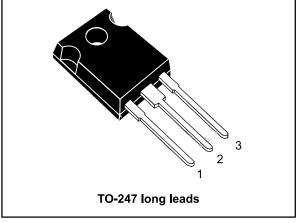
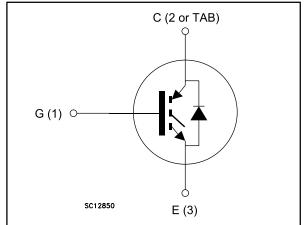



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- Low saturation voltage: $V_{CE(sat)} = 1.6 V (typ.)$ @ I_C = 40 A
- Tight parameter distribution
- Safe paralleling
- Low thermal resistance
- Very fast soft recovery antiparallel diode

Applications

- Photovoltaic inverters
- High frequency converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive $V_{CE(sat)}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGWA40H65DFB	G40H65DFB	TO-247 long leads	Tube

DocID029398 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	7
3	Test cir	cuits	13
4	Packag	e mechanical data	14
	4.1	TO-247 long lead package information	14
5	Revisio	on history	16

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCES	Collector-emitter voltage (V _{GE} = 0)	650	V
la	Continuous collector current at T _C = 25 °C		А
lc	Continuous collector current at Tc = 100 °C	40	A
ICP ⁽¹⁾	Pulsed collector current	160	А
V_{GE}	Gate-emitter voltage	±20	V
1_	Continuous forward current at $T_C = 25 \ ^\circ C$	80	А
IF	Continuous forward current at T _C = 100 °C	40	A
IFP ⁽¹⁾	Pulsed forward current	160	А
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	283	W
Tstg	Storage temperature range	- 55 to 150	°C
TJ	Operating junction temperature range	- 55 to 175	C

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	0.53	
RthJC	Thermal resistance junction-case diode	1.14	°C/W
RthJA	Thermal resistance junction-ambient	50	

 $T_C = 25$ °C unless otherwise specified

I able 4: Static characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)CES}$	Collector-emitter breakdown voltage	V_{GE} = 0 V, I _C = 2 mA	650			V
		$V_{GE} = 15 V, I_C = 40 A$		1.6	2	
V _{CE(sat)} Collector-emitter saturation voltage	$V_{GE} = 15 \text{ V}, \text{ Ic} = 40 \text{ A}, T_J = 125 ^{\circ}\text{C}$		1.7		V	
	voltage	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 40 \text{ A},$ T _J = 175 °C		1.8		
		I _F = 40 A		1.7	2.45	
VF	Forward on-voltage	$I_F = 40 \text{ A}, T_J = 125 ^\circ\text{C}$		1.4		V
		I _F = 40 A, T _J = 175 °C		1.3		
$V_{\text{GE}(\text{th})}$	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 1 \text{ mA}$	5	6	7	V
ICES	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
I _{GES}	Gate-emitter leakage current	$V_{CE} = 0 V, V_{GE} = \pm 20 V$			±250	nA

Table 4: Static characteristics

Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	5412	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	198	-	pF
Cres	Reverse transfer capacitance	-		107	-	
Qg	Total gate charge		-	210	-	
Q _{ge}	Gate-emitter charge	V _{CC} = 520 V, I _C = 40 A, V _{GE} = 15 V (see <i>Figure 29: " Gate charge test</i>		39	-	nC
Q _{gc}	Gate-collector charge	circuit")	-	82	-	

Table 6: IGBT switching	characteristics	(inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			40	-	
tr	Current rise time			13	-	ns
(di/dt) _{on}	Turn-on current slope	$V_{CE} = 400 \text{ V}, I_C = 40 \text{ A}, V_{GE} = 15 \text{ V},$ $R_G = 5 \Omega$ (see Figure 28: "Test circuit for inductive load switching")		2413	-	A/µs
$t_{d(\text{off})}$	Turn-off-delay time			142	-	
tſ	Current fall time			27	-	ns

Electrical characteristics

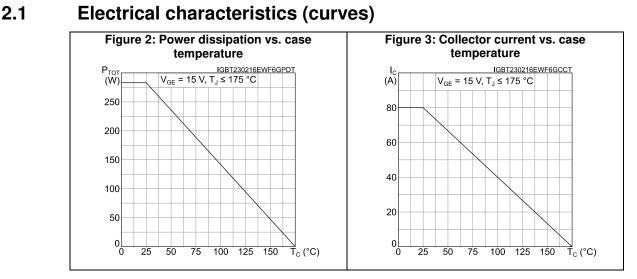
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾	Turn-on switching energy			498	-	
E _{off} ⁽²⁾	Turn-off switching energy			363	-	μJ
E _{ts}	Total switching energy			861	-	
t _{d(on)}	Turn-on delay time			38	-	ns
tr	Current rise time			14	-	115
(di/dt) _{on}	Turn-on current slope			2186	-	A/µs
$t_{d(\text{off})}$	Turn-off-delay time	V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V,		141	-	ns
tr	Current fall time	$V_{CE} = 400 \text{ V}, \text{ IC} = 40 \text{ A}, \text{ V}_{GE} = 13 \text{ V},$ $R_G = 5 \Omega, T_J = 175 \text{ °C}$ (see <i>Figure 28:</i> " <i>Test circuit for inductive load switching</i> ")		61	-	115
Eon ⁽¹⁾	Turn-on switching energy	,		1417	-	
E _{off} ⁽²⁾	Turn-off switching energy			764	-	μJ
Ets	Total switching energy			2181	-	

Notes:

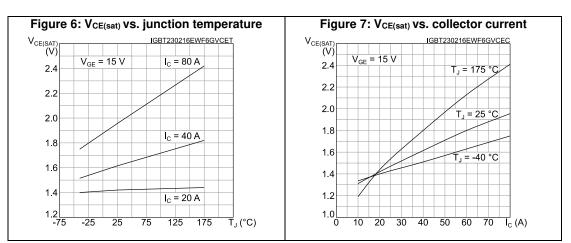
 $\ensuremath{^{(1)}}\xspace$ Including the reverse recovery of the diode.

⁽²⁾Including the tail of the collector current.

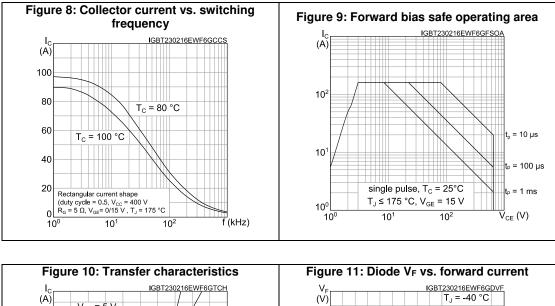
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
trr	Reverse recovery time			62	-	ns
Qrr	Reverse recovery charge		-	99	-	nC
Irrm	Reverse recovery current	$I_F = 40 \text{ A}, V_R = 400 \text{ V}, V_{GE} = 15 \text{ V},$ di/dt = 100 A/µs (see <i>Figure 28: " Test</i> <i>circuit for inductive load switching"</i>)		3.3	-	А
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b			187	-	A/µs
Err	Reverse recovery energy			68	-	μJ
trr	Reverse recovery time	$ I_F = 40 \text{ A}, V_R = 400 \text{ V}, V_{GE} = 15 \text{ V}, \\ T_J = 175 \ ^\circ\text{C}, \ di/dt = 100 \text{ A}/\mu\text{s} $	-	310	-	ns

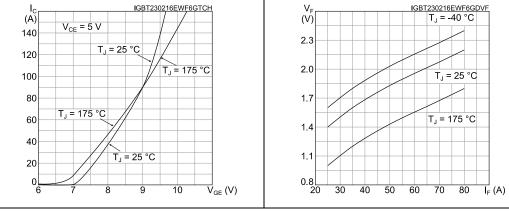

Table 7: Diode switching characteristics (inductive load)

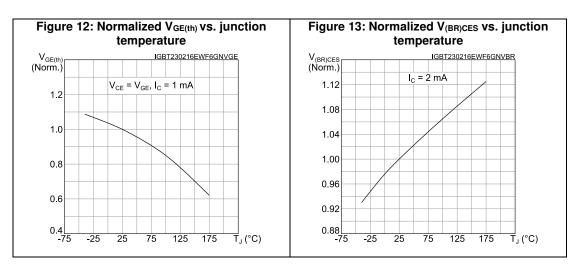



STGWA40H65DFB

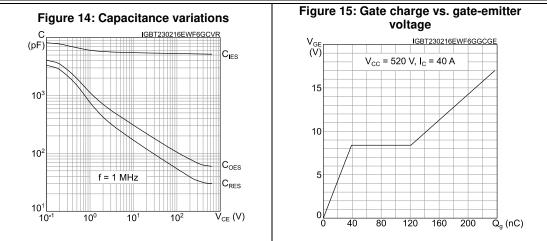
character	istics			STGW	A40H6	5DFB
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Qrr	Reverse recovery charge	(see Figure 28: " Test circuit for inductive load switching")	-	1550	-	nC
Irrm	Reverse recovery current		-	10	-	А
dI _{rr} /dt	Peak rate of fall of reverse recovery current during t _b		-	70	-	A/µs
Err	Reverse recovery energy		-	674	-	μJ

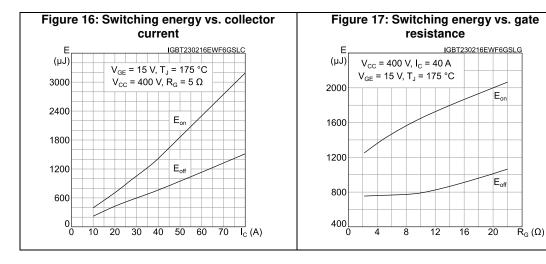


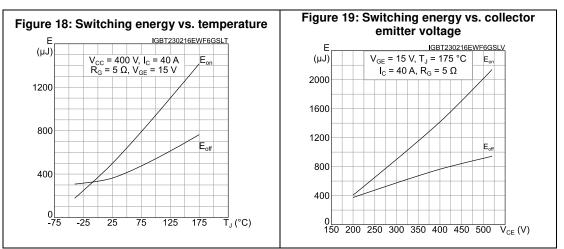


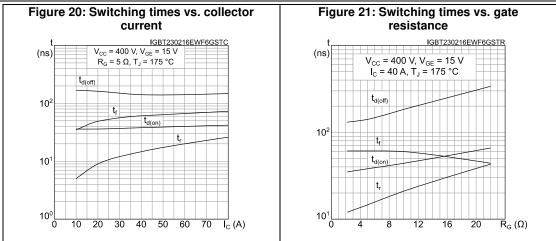


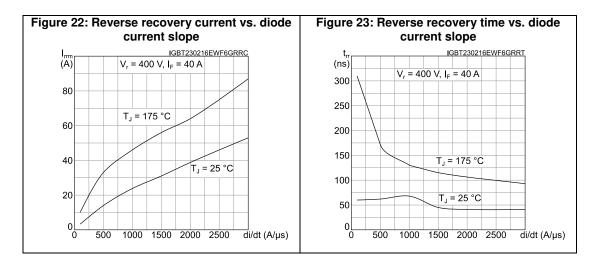
57

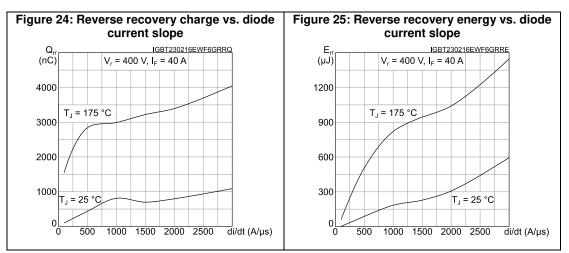

STGWA40H65DFB



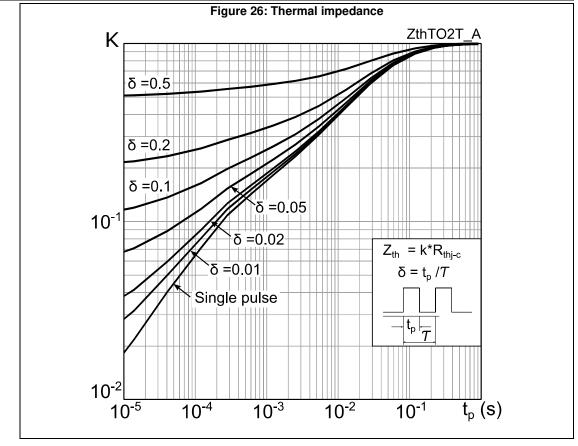


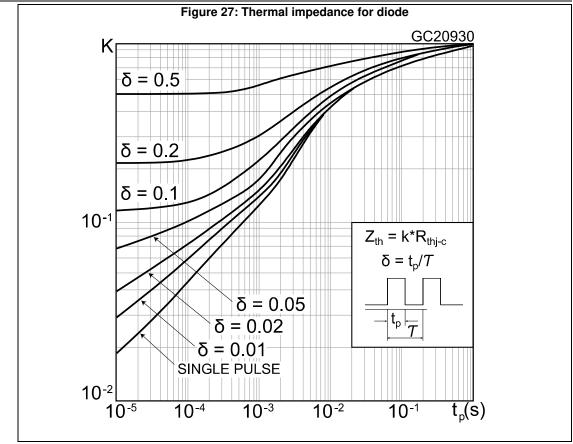


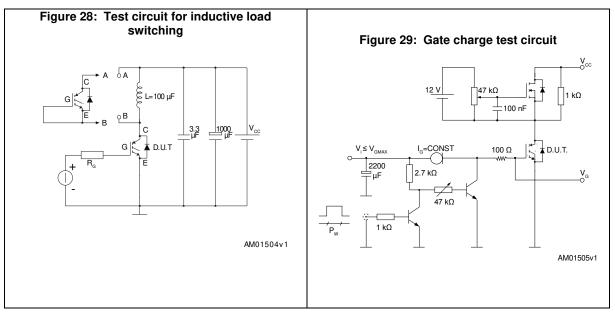


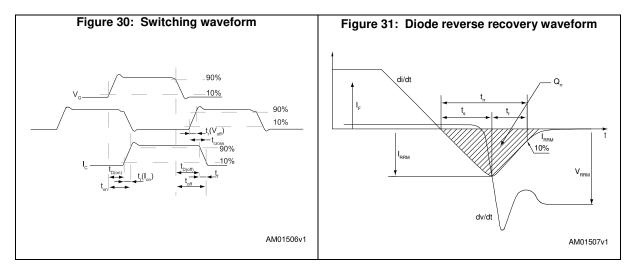


57


STGWA40H65DFB






STGWA40H65DFB

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 long lead package information

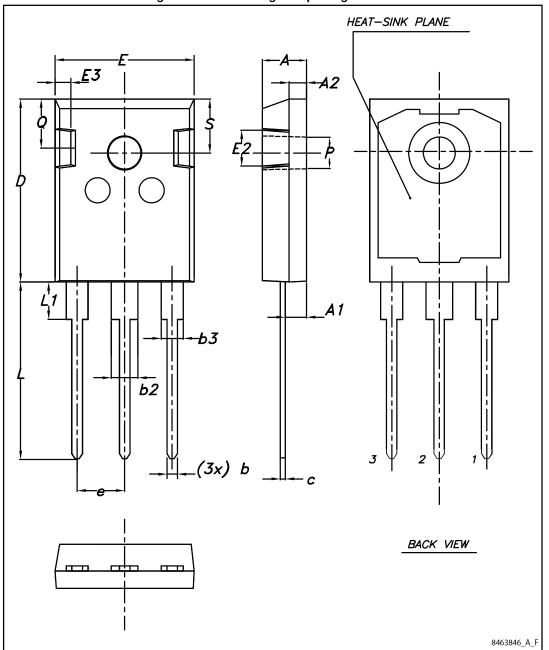


Figure 32: TO-247 long lead package outline

Package mechanical data

Table 8: TO-247 long lead package mechanical data							
Dim		mm					
Dim.	Min.	Тур.	Max.				
A	4.90	5.00	5.10				
A1	2.31	2.41	2.51				
A2	1.90	2.00	2.10				
b	1.16		1.26				
b2			3.25				
b3			2.25				
С	0.59		0.66				
D	20.90	21.00	21.10				
E	15.70	15.80	15.90				
E2	4.90	5.00	5.10				
E3	2.40	2.50	2.60				
е	5.34	5.44	5.54				
L	19.80	19.92	20.10				
L1			4.30				
Р	3.50	3.60	3.70				
Q	5.60		6.00				
S	6.05	6.15	6.25				

Revision history 5

Table 9: Document revision history	Table	9:	Document	revision	history
------------------------------------	-------	----	----------	----------	---------

Date	Revision	Changes
06-Jun-2016	1	Initial version. Part number previously included in datasheet DocID024363.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

