imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGW40NC60W

40 A - 600 V - ultra fast IGBT

Features

- Low C_{RES} / C_{IES} ratio (no cross conduction susceptibility)
- High frequency operation

Applications

- High frequency inverters, UPS
- Motor drivers
- HF, SMPS and PFC in both hard switch and resonant topologies
- Welding
- Induction heating

Description

This IGBT utilizes the advanced PowerMESH™ process resulting in an excellent trada-off between switching performance and low on-state Josolete Pro behavior.

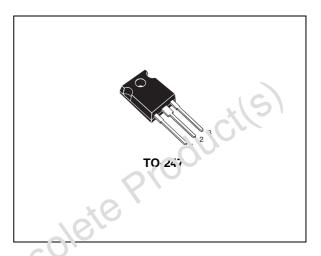
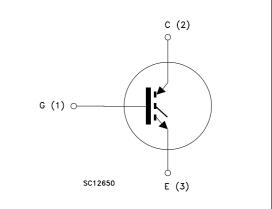



Figure 1.

Table 1	Device	summary
I GOIO I	001100	ounnury

Order code	Marking	Package	Packaging
STGW40NC60W	GW40NC60W	TO-247	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	9
4	Package mechanical data 1	0
5	Revision history 1	2
	Obsolete .	
	Product(S)	
Obe	Electrical ratings	

Electrical ratings 1

Table 2.	Absolute	maximum	ratings
	Absolute	maximum	runngo

Symbol	Parameter	Value	Unit				
V _{CES}	Collector-emitter voltage ($V_{GE} = 0$)	600	V				
I _C ⁽¹⁾	Collector current (continuous) at 25 °C	70	А				
I _C ⁽¹⁾	Collector current (continuous) at 100 °C	40	А				
I _{CL} ⁽²⁾	Turn-off latching current	230	А				
I _{CP} ⁽³⁾	Pulsed collector current	230	A				
V_{GE}	Gate-emitter voltage	±20	V				
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	250	W				
Тj	Operating junction temperature	- 55 to 150	°C				
1. Calculated according to the iterative formula:							
$I_{C}(T_{C}) = \frac{1}{R_{THJ}}$	$\frac{T_{JMAX} - T_{C}}{-C \times V_{CESAT(MAX)} (T_{C}, I_{C})}$	ste					
Volamn –	$80\%(V_{0,70})$ Ti = 150 °C B ₀ = 10 O V_{0,77} 15 V						

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

2. Vclamp = 80%(V_{CES}), Tj = 150 °C, R_G = 10 Ω , V_{GE⁼} 15 ½

3. Pulse width limited by max. junction temperature allowed

Thermal resistance Table 3.

	Symbol	Parameter	Value	Unit
	R _{thj-case}	Thermai redistance junction-case max	0.5	°C/W
	R _{thj-amb}	Themal resistance junction-ambient max	50	°C/W
Obsole	jeri			

Electrical characteristics 2

(T_{CASE}=25 °C unless otherwise specified)

Table 4.	Static
i able 4.	Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage ($V_{GE} = 0$)	I _C = 1 mA	600			v
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A V _{GE} = 15 V, I _C = 30 A, T _C =125 °C		2.1 1.9	2.5	v v
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	3.75	X	5.75	V
I _{CES}	Collector-emitter cut-off current (V _{GE} = 0)	V _{GE} = 600 V V _{GE} = 600 V, T _C =125 °C	6	20	500 5	μA mA
I _{GES}	Gate-emitter cut-off current (V _{CE} = 0)	V _{GE} = ± 20 V			±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15 V_{1,2} = 30 V$		20		S

Table 5. Dynamic

	Table 5. Symbol	Dynamic Parameter	Test conditions	Min.	Тур.	Max.	Unit
	C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0		2900 298 59		pF pF pF
	Q _g Q _{ge} ସ୍ _{jc}	Tctal gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 390 \text{ V}, \text{ I}_{C} = 30 \text{ A},$ $V_{GE} = 15 \text{ V}$ (see Figure 17)		126 16 46		nC nC nC
Obsole	,		•				

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V}$ <i>(see Figure 16)</i>		33 12 2600		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>(see Figure 16)</i>		32 14 2300		ns ns A/µs
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V}$ <i>(see Figure 16)</i>		26 168 C6	6	ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A},$ $R_{GE}=10 \Omega, V_{GE} = 15 \text{ V}$ $T_C=125 \text{ °C} (see Figure 16)$	0	54 213 67		ns ns ns

Table 6. Switching on/off (inductive load)

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching lossອร Total switching losses	V_{CC} = 390 V, I _C = 30 A R _G = 10 Ω, V _{GE} = 15 V (see Figure 16)		302 349 651		μJ μJ μJ
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _t	Turn-ch รพ.tching losses Turn-of: switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>(see Figure 16)</i>		553 750 1303		μJ μJ μJ

Ecn is the turn-on losses when a typical diode is used in the test circuit in figure 2 Eon include diode recovery energy. If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & diode are at the same temperature (25 °C and 125 °C)

2. Turn-off losses include also the tail of the collector current

105C

HV31690

 $V_{GE} = 15V$

lc=50A

lc=30A

150 TJ (°C)

lc=20A

50

100

Electrical characteristics (curves) 2.1

Figure 2. **Output characteristics**

Transfer characteristics Figure 3.

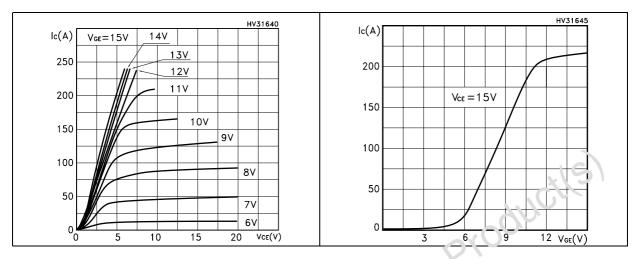


Figure 5.

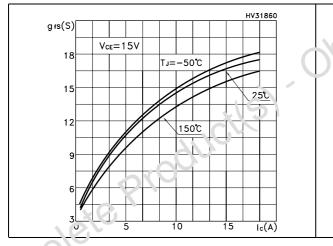
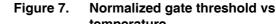



Figure S.

Collector-emitter on voltage vs collector current

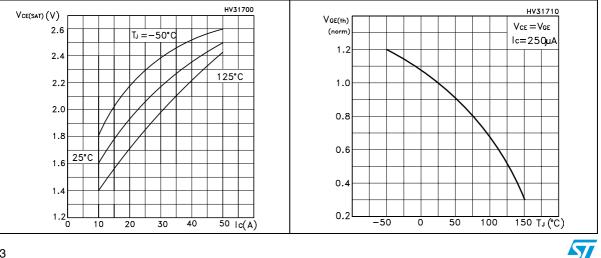
-50

VCE(SAT)

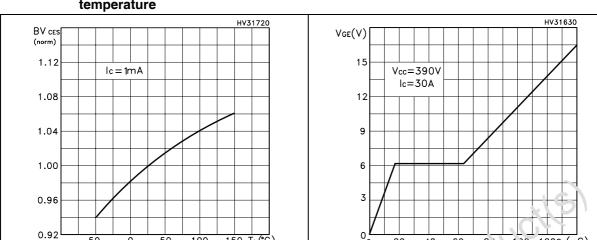
2.6

2.4

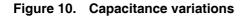
2.2


2.0

1.8


1.6

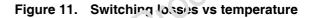
temperature


0

81 1.0 120Qg(nC)

Figure 8. Normalized breakdown voltage vs Figure 9. Gate charge vs gate-emitter voltage temperature

0


100

50

150 TJ (°C)

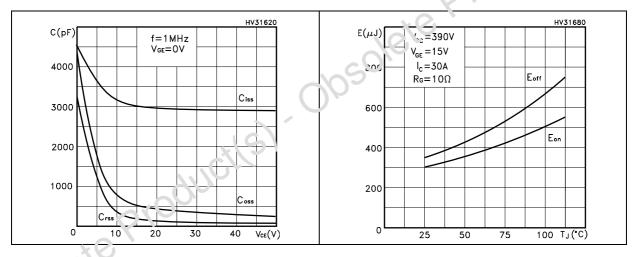
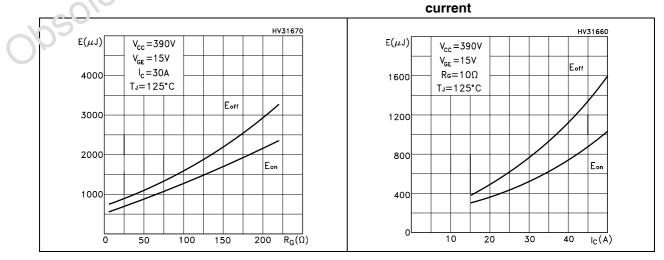
-50

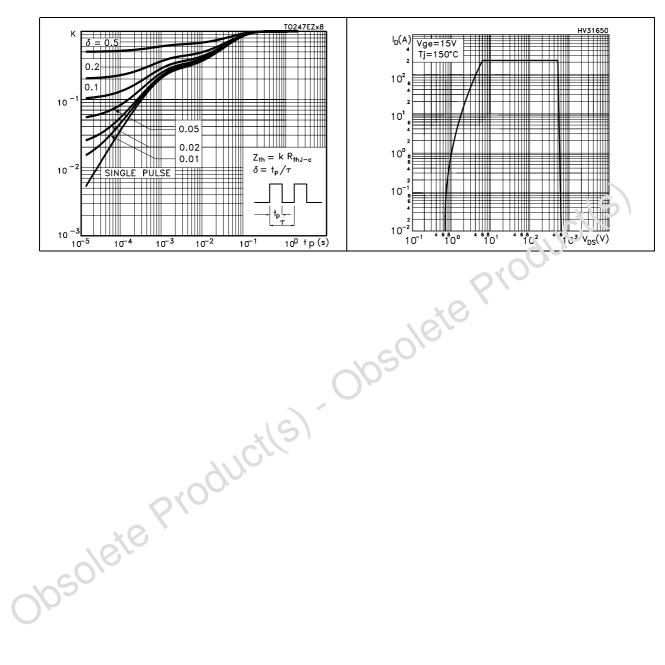
5

60

40

20


Figure 12 Switching losses vs gate resistance Figure 13. Switching losses vs collector

7/13

Figure 14. Thermal impedance

Figure 15. Turn-off SOA

3 Test circuit

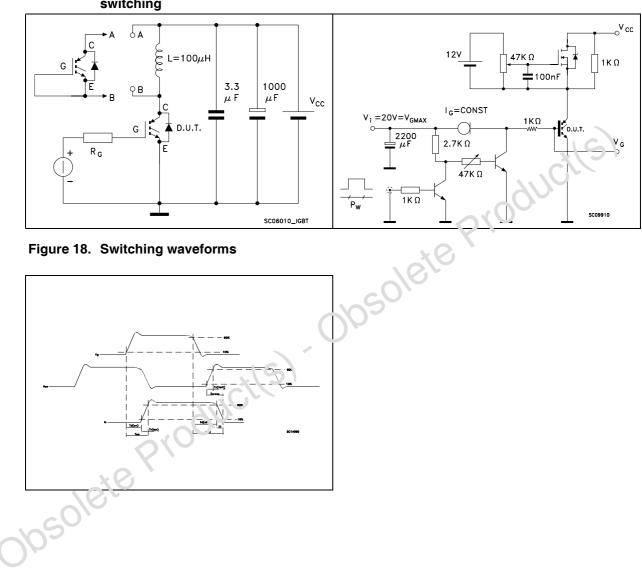
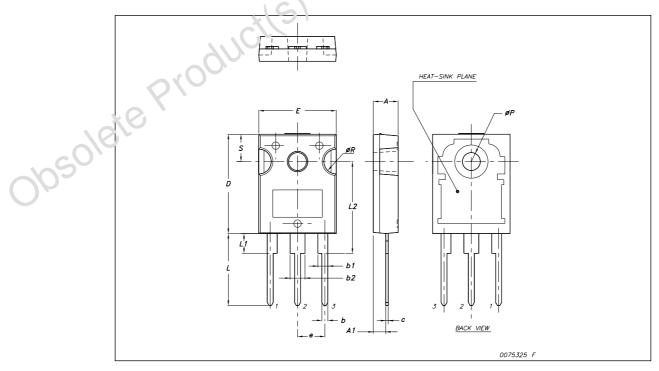


Figure 17. Gate charge test circuit

Figure 16. Test circuit for inductive load switching

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*


obsolete Produci(s) - Obsolete Produci(s)

57

Г

	TO-2	47 Mechanical data				
Dim.	mm.					
	Min.	Тур	Max.			
Α	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
с	0.40		0 c 0			
D	19.85		?ට.15			
E	15.45		15.75			
е		5.45				
L	14.20		14.80			
L1	3.70	1010	4.30			
L2		16.50				
øP	3.55	105	3.65			
øR	4.50	(D_{A})	5.50			
S	<hr/>	5.50				

5 Revision history

Table 8.Document revision history

Date	Revision	Changes
09-Jul-2008	1	First release

obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiations (Si") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property ights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a way only covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein or considered as a way only covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WHITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF WARTANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTE OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROFETTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE WHEN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

