# mail

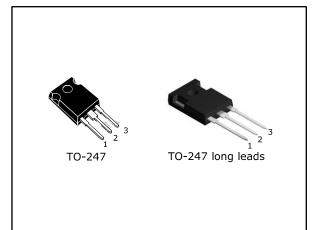
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

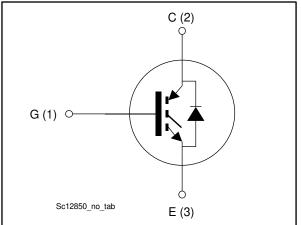
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China






# Trench gate field-stop IGBT, M series 650 V, 75 A low-loss in TO-247 and TO-247 long leads packages

Datasheet - production data



#### Figure 1: Internal schematic diagram



#### **Features**

- 6 μs of short-circuit withstand time
- V<sub>CE(sat)</sub> = 1.65 V (typ.) @ I<sub>C</sub> = 75 A
- Tight parameter distribution
- Safer paralleling
- Positive V<sub>CE(sat)</sub> temperature coefficient
- Low thermal resistance
- Soft and very fast recovery antiparallel diode
- Maximum junction temperature: T<sub>J</sub> = 175 °C

#### **Applications**

- Motor control
- UPS
- PFC
- General purpose inverter

### Description

These devices are IGBTs developed using an advanced proprietary trench gate field-stop structure. The devices are part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive  $V_{CE(sat)}$  temperature coefficient and tight parameter distribution result in safer paralleling operation.

#### Table 1: Device summary

| Order code    | Marking   | Package           | Packing |
|---------------|-----------|-------------------|---------|
| STGW75M65DF2  |           | TO-247            | Tuba    |
| STGWA75M65DF2 | G75M65DF2 | TO-247 long leads | Tube    |

This is information on a product in full production.

#### Contents

## Contents

| 1 | Electric | al ratings                            | 3  |
|---|----------|---------------------------------------|----|
| 2 | Electric | al characteristics                    | 4  |
|   | 2.1      | Electrical characteristics (curves)   | 6  |
| 3 | Test cir | cuits                                 |    |
| 4 | Packag   | e information                         |    |
|   | 4.1      | TO-247 package information            | 13 |
|   | 4.2      | TO-247 long leads package information | 15 |
| 5 | Revisio  | n history                             |    |



## 1 Electrical ratings

#### Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                               | Value       | Unit |
|--------------------------------|---------------------------------------------------------|-------------|------|
| VCES                           | Collector-emitter voltage (V <sub>GE</sub> = 0 V)       | 650         | V    |
| lc <sup>(1)</sup>              | Continuous collector current at $T_C = 25 \text{ °C}$   | 120         | А    |
| lc                             | Continuous collector current at T <sub>c</sub> = 100 °C | 75          | А    |
| ICP <sup>(2)</sup>             | Pulsed collector current                                | 225         | А    |
| V <sub>GE</sub>                | Gate-emitter voltage                                    | ±20         | V    |
| IF <sup>(1)</sup>              | Continuous forward current at $T_C = 25 \text{ °C}$     | 120         | А    |
| lF                             | Continuous forward current at T <sub>C</sub> = 100 °C   | 75          | А    |
| I <sub>FP</sub> <sup>(2)</sup> | Pulsed forward current                                  | 225         | А    |
| Ртот                           | Total dissipation at $T_c = 25 \ ^{\circ}C$             | 468         | W    |
| Tstg                           | Storage temperature range - 55 to 150                   |             | °C   |
| TJ                             | Operating junction temperature range                    | - 55 to 175 | °C   |

#### Notes:

<sup>(1)</sup>Current level is limited by bond wires

 $^{(2)}\mbox{Pulse}$  width limited by maximum junction temperature.

#### Table 3: Thermal data

| Symbol            | Parameter                              | Value | Unit |
|-------------------|----------------------------------------|-------|------|
| RthJC             | Thermal resistance junction-case IGBT  | 0.32  | °C/W |
| R <sub>thJC</sub> | Thermal resistance junction-case diode | 0.74  | °C/W |
| RthJA             | Thermal resistance junction-ambient    | 50    | °C/W |



## 2 Electrical characteristics

 $T_C = 25$  °C unless otherwise specified

| Symbol                     | Parameter                            | Test conditions                                                           | Min. | Тур. | Max. | Unit |
|----------------------------|--------------------------------------|---------------------------------------------------------------------------|------|------|------|------|
| $V_{(BR)CES}$              | Collector-emitter breakdown voltage  | $V_{GE}$ = 0 V, I <sub>C</sub> = 250 $\mu$ A                              | 650  |      |      | V    |
|                            |                                      | $V_{GE} = 15 \text{ V}, I_{C} = 75 \text{ A}$                             |      | 1.65 | 2.1  |      |
| V <sub>CE(sat)</sub>       | Collector-emitter saturation voltage | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 75 A,<br>T <sub>J</sub> = 125 °C |      | 1.95 |      | v    |
|                            | Voltage                              |                                                                           |      | 2.1  |      |      |
|                            |                                      | I <sub>F</sub> = 75 A                                                     |      | 2    | 2.85 |      |
| VF                         | Forward on-voltage                   | I <sub>F</sub> =75 A, T <sub>J</sub> = 125 °C                             |      | 1.75 |      | V    |
|                            |                                      | I <sub>F</sub> = 75 A, T <sub>J</sub> = 175 °C                            |      | 1.6  |      |      |
| $V_{\text{GE}(\text{th})}$ | Gate threshold voltage               | $V_{CE} = V_{GE}, I_C = 2 \text{ mA}$                                     | 5    | 6    | 7    | V    |
| ICES                       | Collector cut-off current            | $V_{GE} = 0 V, V_{CE} = 650 V$                                            |      |      | 25   | μA   |
| I <sub>GES</sub>           | Gate-emitter leakage current         | $V_{CE} = 0 V, V_{GE} = \pm 20 V$                                         |      |      | ±250 | μA   |

#### Table 4: Static characteristics

#### Table 5: Dynamic characteristics

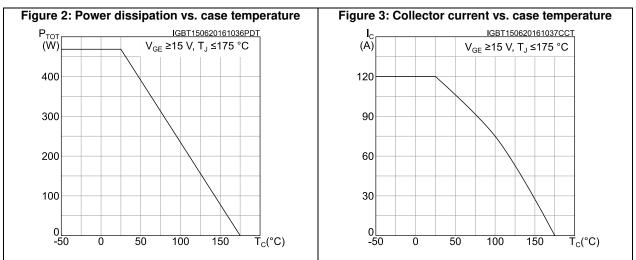
| Symbol          | Parameter                    | Test conditions                                                     | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------|---------------------------------------------------------------------|------|------|------|------|
| Cies            | Input capacitance            |                                                                     | -    | 6290 | -    |      |
| Coes            | Output capacitance           | V <sub>CE</sub> = 25 V, f = 1 MHz,<br>V <sub>GE</sub> = 0 V         | -    | 390  | -    | pF   |
| Cres            | Reverse transfer capacitance |                                                                     | -    | 136  | -    |      |
| Qg              | Total gate charge            | Vcc = 520 V, Ic = 75 A,                                             | -    | 225  | -    |      |
| Q <sub>ge</sub> | Gate-emitter charge          | V <sub>GE</sub> = 0 to 15 V<br>(see <i>Figure 30:</i> " <i>Gate</i> | -    | 53   | -    | nC   |
| Q <sub>gc</sub> | Gate-collector charge        | charge test circuit")                                               | -    | 87   | -    |      |

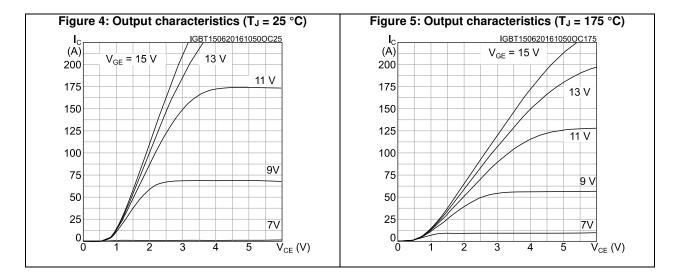
#### Electrical characteristics

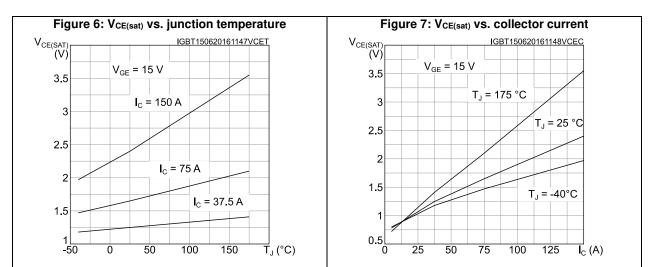
| Symbol                          | Parameter                    | Test conditions                                                                                                                        | Min. | Тур. | Max. | Unit |
|---------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>              | Turn-on delay time           |                                                                                                                                        |      | 47   | -    | ns   |
| tr                              | Current rise time            | -                                                                                                                                      |      | 22.4 | -    | ns   |
| (di/dt) <sub>on</sub>           | Turn-on current slope        | V <sub>CE</sub> = 400 V, I <sub>C</sub> = 75 A,                                                                                        |      | 2680 | -    | A/µs |
| t <sub>d(off)</sub>             | Turn-off-delay time          | $V_{GE} = 15 \text{ V}, \text{ R}_{G} = 3.3 \Omega$                                                                                    |      | 125  | -    | ns   |
| t <sub>f</sub>                  | Current fall time            | <ul> <li>(see Figure 29: "Test<br/>circuit for inductive load</li> </ul>                                                               |      | 93   | -    | ns   |
| Eon <sup>(1)</sup>              | Turn-on switching energy     | switching")                                                                                                                            |      | 0.69 | -    | mJ   |
| E <sub>off</sub> <sup>(2)</sup> | Turn-off switching energy    |                                                                                                                                        |      | 2.54 | -    | mJ   |
| Ets                             | Total switching energy       |                                                                                                                                        |      | 3.23 | -    | mJ   |
| td(on)                          | Turn-on delay time           |                                                                                                                                        |      | 48   | -    | ns   |
| tr                              | Current rise time            |                                                                                                                                        |      | 25   | -    | ns   |
| (di/dt) <sub>on</sub>           | Turn-on current slope        | $V_{CE} = 400 \text{ V}, \text{ I}_{C} = 75 \text{ A},$<br>$V_{GE} = 15 \text{ V}, \text{ R}_{G} = 3.3 \Omega$                         |      | 2420 | -    | A/µs |
| td(off)                         | Turn-off-delay time          | $T_{\rm J} = 175 ^{\circ}{\rm C}$                                                                                                      |      | 125  | -    | ns   |
| tr                              | Current fall time            | (see Figure 29: "Test                                                                                                                  |      | 167  | -    | ns   |
| Eon <sup>(1)</sup>              | Turn-on switching energy     | <pre>circuit for inductive load switching")</pre>                                                                                      |      | 2.17 | -    | mJ   |
| E <sub>off</sub> <sup>(2)</sup> | Turn-off switching energy    | ,                                                                                                                                      |      | 3.45 | -    | mJ   |
| Ets                             | Total switching energy       |                                                                                                                                        |      | 5.62 | -    | mJ   |
|                                 |                              | $\label{eq:Vcc} \begin{array}{l} V_{CC} \leq 400 \ V, \ V_{GE} = 13 \ V, \\ T_{Jstart} \leq 150 \ ^{\circ}C \end{array}$               | 10   |      | -    |      |
| t <sub>sc</sub>                 | Short-circuit withstand time | $\label{eq:V_CC} \begin{split} V_{CC} &\leq 400 \text{ V},  V_{GE} = 15 \text{ V}, \\ T_{Jstart} &\leq 150 ^\circ\text{C} \end{split}$ | 6    |      |      | μs   |

#### Table 6: IGBT switching characteristics (inductive load)

#### Notes:


<sup>(1)</sup>Including the reverse recovery of the diode. <sup>(2)</sup>Including the tail of the collector current.

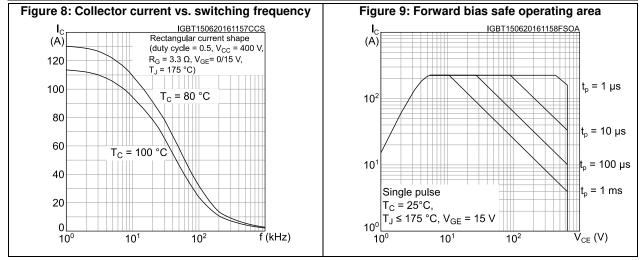

| Symbol          | Parameter                                               | Test conditions                                                           | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------------------|------|------|------|------|
| trr             | Reverse recovery time                                   |                                                                           | -    | 165  | -    | ns   |
| Q <sub>rr</sub> | Reverse recovery charge                                 | I <sub>F</sub> = 75 A, V <sub>R</sub> = 400 V,<br>V <sub>GE</sub> = 15 V, | -    | 1.72 | -    | μC   |
| Irrm            | Reverse recovery current                                | di/dt = 1000 A/µs                                                         | -    | 25   | -    | А    |
| dlrr/dt         | Peak rate of fall of reverse recovery current during tb | (see Figure 29: " Test<br>circuit for inductive load<br>switchina")       | -    | 750  | -    | A/µs |
| Err             | Reverse recovery energy                                 | Switching )                                                               | -    | 289  | -    | μJ   |
| t <sub>rr</sub> | Reverse recovery time                                   | I <sub>F</sub> = 75 A, V <sub>R</sub> = 400 V,                            | -    | 256  | -    | ns   |
| Qrr             | Reverse recovery charge                                 | $V_{GE} = 15 V$ ,                                                         | -    | 6.85 | -    | μC   |
| Irrm            | Reverse recovery current                                | di/dt = 1000 A/µs,<br>TJ = 175 °C                                         | -    | 48   | -    | Α    |
| dlrr/dt         | Peak rate of fall of reverse recovery current during tb | (see Figure 29: " Test<br>circuit for inductive load                      | -    | 300  | -    | A/µs |
| Err             | Reverse recovery energy                                 | switching")                                                               | -    | 1033 | -    | μJ   |

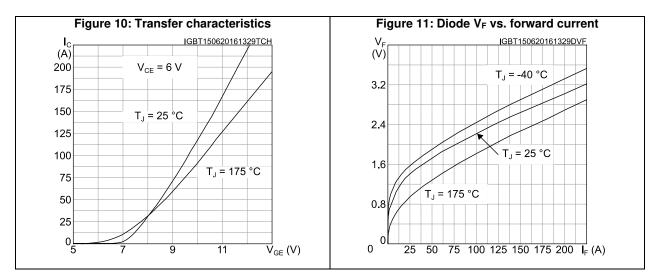

| Table 7: Diode switching characteristics (inductive load) |  |
|-----------------------------------------------------------|--|
|-----------------------------------------------------------|--|

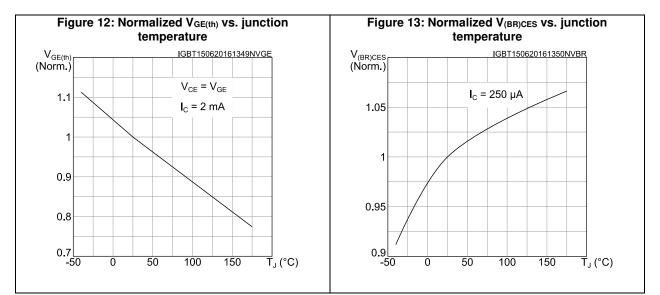


## 2.1 Electrical characteristics (curves)



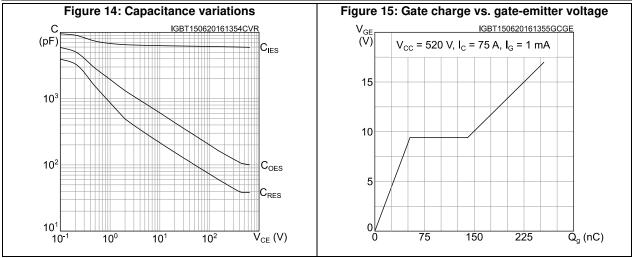


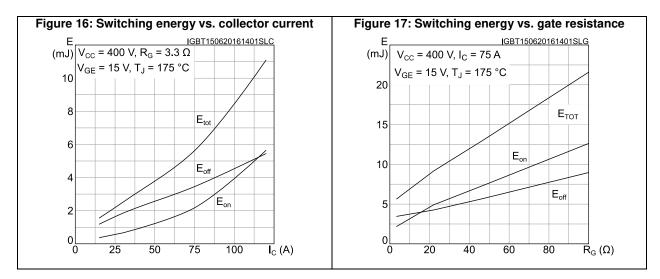



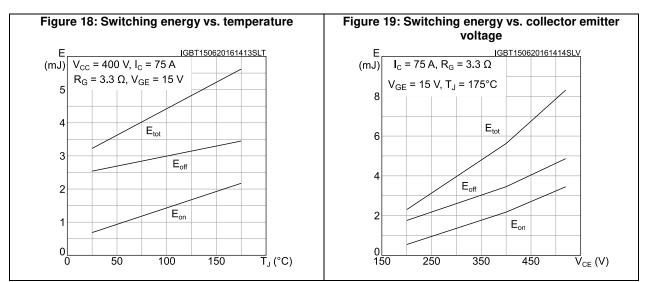




57

#### **Electrical characteristics**



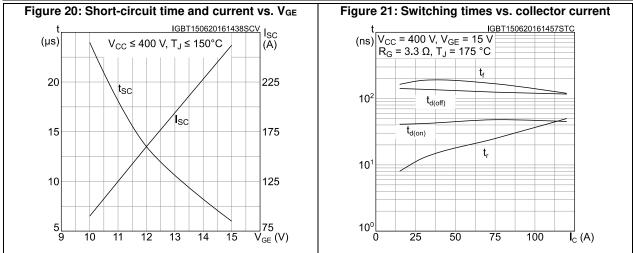



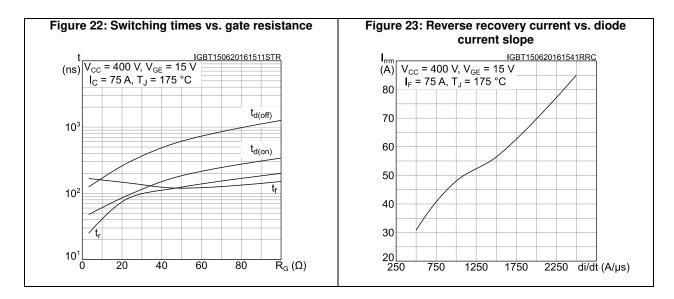



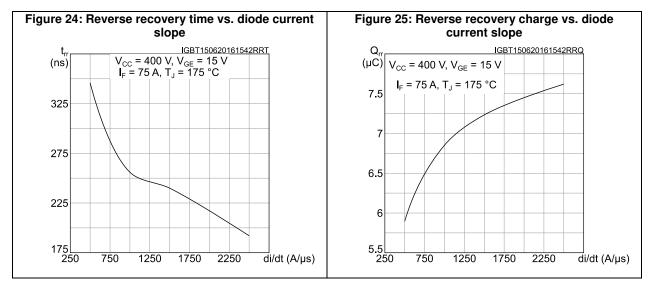

#### **Electrical characteristics**

#### STGW75M65DF2, STGWA75M65DF2



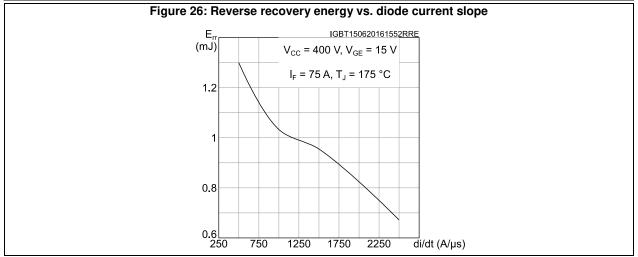


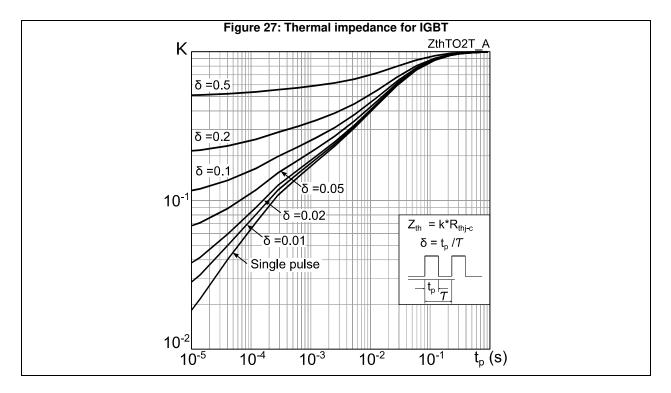




57

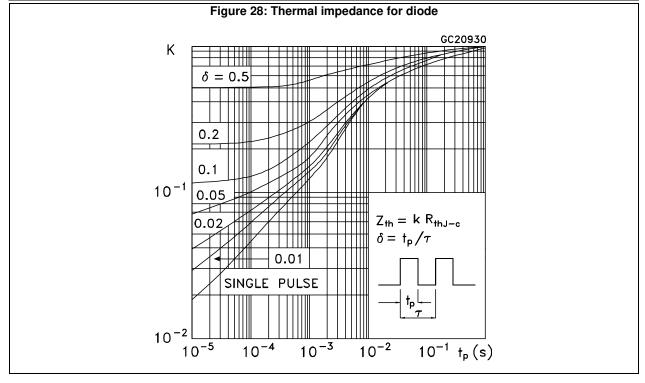
#### **Electrical characteristics**



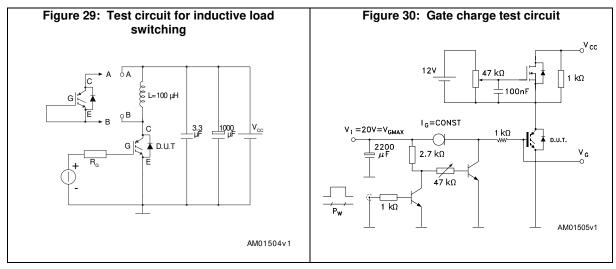


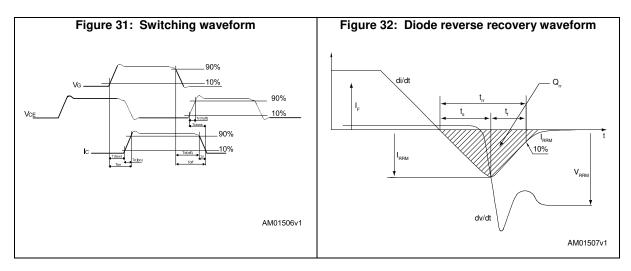

#### **Electrical characteristics**


#### STGW75M65DF2, STGWA75M65DF2









#### **Electrical characteristics**

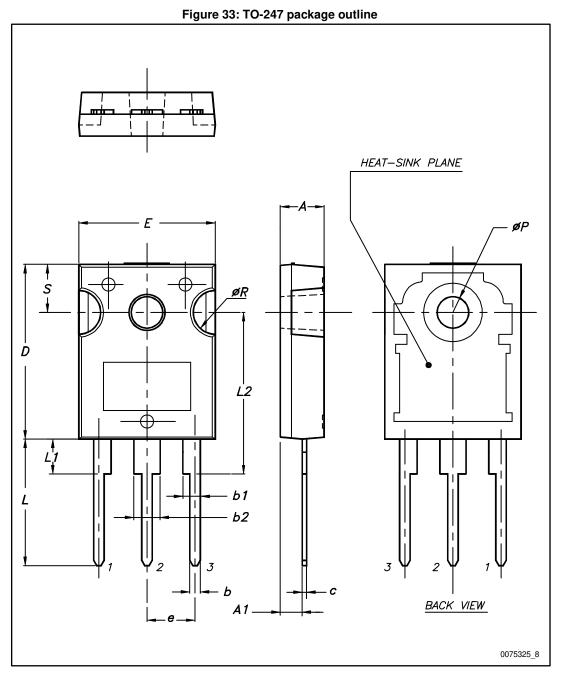




## 3 Test circuits








57

## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.

### 4.1 TO-247 package information



#### Package information

#### STGW75M65DF2, STGWA75M65DF2

|      | Table 8: TO-247 pac | kage mechanical data | 2, 01 01 7 7 0 100 0 1 2 |
|------|---------------------|----------------------|--------------------------|
| Dim. |                     | mm                   |                          |
| Dim. | Min.                | Тур.                 | Max.                     |
| A    | 4.85                |                      | 5.15                     |
| A1   | 2.20                |                      | 2.60                     |
| b    | 1.0                 |                      | 1.40                     |
| b1   | 2.0                 |                      | 2.40                     |
| b2   | 3.0                 |                      | 3.40                     |
| С    | 0.40                |                      | 0.80                     |
| D    | 19.85               |                      | 20.15                    |
| E    | 15.45               |                      | 15.75                    |
| е    | 5.30                | 5.45                 | 5.60                     |
| L    | 14.20               |                      | 14.80                    |
| L1   | 3.70                |                      | 4.30                     |
| L2   |                     | 18.50                |                          |
| ØP   | 3.55                |                      | 3.65                     |
| ØR   | 4.50                |                      | 5.50                     |
| S    | 5.30                | 5.50                 | 5.70                     |



## 4.2 TO-247 long leads package information

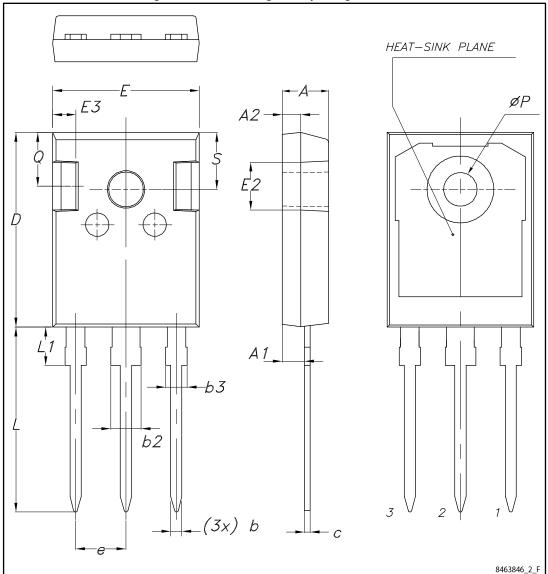



Figure 34: TO-247 long leads package outline



#### Package information

#### STGW75M65DF2, STGWA75M65DF2

| Table 9: TO-247 long leads package mechanical data |       |       |       |
|----------------------------------------------------|-------|-------|-------|
| Dim.                                               |       | mm    |       |
| Dim.                                               | Min.  | Тур.  | Max.  |
| A                                                  | 4.90  | 5.00  | 5.10  |
| A1                                                 | 2.31  | 2.41  | 2.51  |
| A2                                                 | 1.90  | 2.00  | 2.10  |
| b                                                  | 1.16  |       | 1.26  |
| b2                                                 |       |       | 3.25  |
| b3                                                 |       |       | 2.25  |
| С                                                  | 0.59  |       | 0.66  |
| D                                                  | 20.90 | 21.00 | 21.10 |
| E                                                  | 15.70 | 15.80 | 15.90 |
| E2                                                 | 4.90  | 5.00  | 5.10  |
| E3                                                 | 2.40  | 2.50  | 2.60  |
| е                                                  | 5.34  | 5.44  | 5.54  |
| L                                                  | 19.80 | 19.92 | 20.10 |
| L1                                                 |       |       | 4.30  |
| Р                                                  | 3.50  | 3.60  | 3.70  |
| Q                                                  | 5.60  |       | 6.00  |
| S                                                  | 6.05  | 6.15  | 6.25  |



## 5 Revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                           |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02-Dec-2015 | 1        | First release.                                                                                                                                                                                                                                                                    |
| 15-Jun-2016 | 2        | Inserted device in TO-247 and document updated accordingly.<br>Inserted Section 2.1: "Electrical characteristics (curves)".<br>Document status promoted from preliminary to production data.<br>Minor text changes.                                                               |
| 03-May-2017 | 3        | Modified: title, features and application on cover page.<br>Modified <i>Table 4: "Static characteristics"</i> , <i>Table 7: "Diode switching characteristics (inductive load)"</i> and <i>Figure 13: "Normalized V</i> (BR)CES vs. junction temperature ".<br>Minor text changes. |

#### Table 10: Document revision history



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

