imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGWA30H65FB

Trench gate field-stop IGBT, HB series 650 V, 30 A high-speed in a TO-247 long leads package

Datasheet - production data

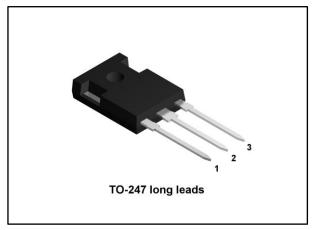
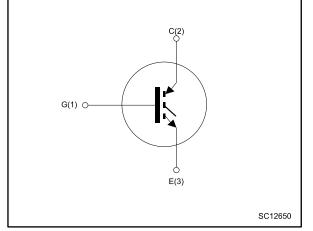



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- High-speed switching series
- Minimized tail current
- V_{CE(sat)} = 1.55 V(typ) @ I_C = 30 A
- Safe paralleling
- Tight parameter distribution
- Low thermal resistance

Applications

- Photovoltaic inverters
- High-frequency converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive $V_{CE(sat)}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGWA30H65FB	GWA30H65FB	TO-247 long leads	Tube

DocID030595 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	
4	Packag	e information	11
	4.1	TO-247 long leads package information	11
5	Revisio	n history	13

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
VCES	Collector-emitter voltage (V _{GE} = 0 V)	650	V	
	Continuous collector current at T _C = 25 °C	60	٨	
Ic Continuous collector current at T _C = 100 °C		30	A	
ICP ⁽¹⁾	Pulsed collector current	120	А	
V_{GE}	Gate-emitter voltage	±20	V	
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	260	W	
Tstg	Storage temperature range -55 to 150		°C	
TJ	Operating junction temperature range	-55 to 175	-0	

Notes:

⁽¹⁾Pulse width limited by maximum junction temperature

Table	3:	Thermal	data
-------	----	---------	------

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case	0.58	°C/W
RthJA	Thermal resistance junction-ambient 50		°C/W

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)CES}$	Collector-emitter breakdown voltage	V_{GE} = 0 V, I_C = 2 mA	650			v
		$V_{GE} = 15 \text{ V}, I_C = 30 \text{ A}$		1.55	2	
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A, T _J = 125 °C		1.65		v
volage		V _{GE} = 15 V, I _C = 30 A, T _J = 175 °C		1.75		
$V_{\text{GE}(\text{th})}$	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 1 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
IGES	Gate-emitter leakage current	$V_{CE} = 0 V$, $V_{GE} = \pm 20 V$			±250	nA

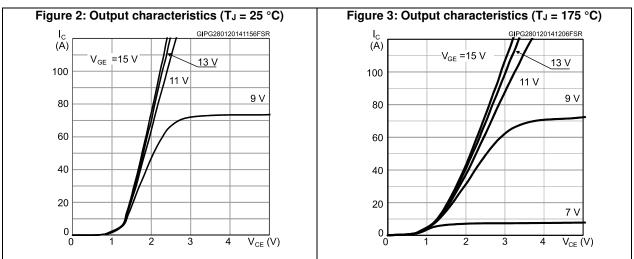
Table 4: Static characteristics

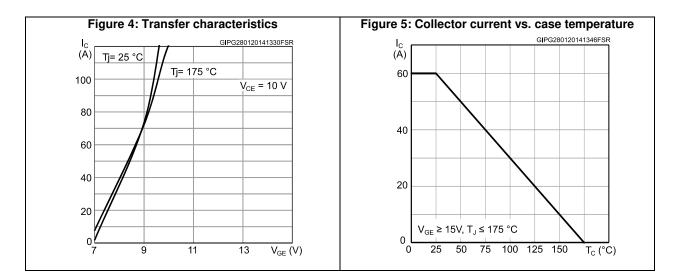
Table 5: Dynamic characteristics

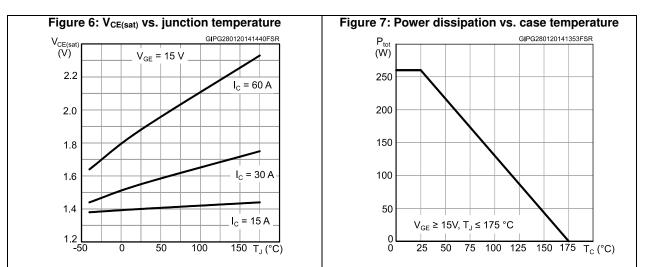
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	3659	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	101	-	pF
Cres	Reverse transfer capacitance		-	76	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 30 A,	-	149	-	
Qge	Gate-emitter charge	V _{GE} = 0 to 15 V (see <i>Figure 23: "Gate</i>	-	25	-	nC
Q _{gc}	Gate-collector charge	charge test circuit")	-	62	-	

Electrical characteristics

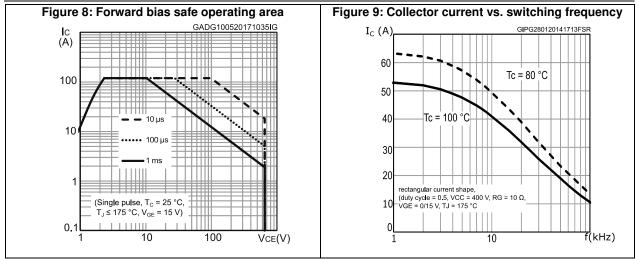
	Table 6: Switching characteristics (inductive load)						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
td(on)	Turn-on delay time		-	37	-	ns	
tr	Current rise time		-	14.6	-	ns	
(di/dt) _{on}	Turn-on current slope	-on current slope		1643	-	A/µs	
td(off)	Turn-off-delay time	V _{CE} = 400 V, I _C = 30 A, V _{GE} = 15 V, R _G = 10 Ω	-	146	-	ns	
t _f	Current fall time (see Figure 22: "Test circuit for		-	23	-	ns	
Eon ⁽¹⁾	Turn-on switching energy	inductive load switching")	-	151	-	mJ	
Eoff ⁽²⁾	Turn-off switching energy		-	293	-	mJ	
Ets	Total switching energy		-	444	-	mJ	
td(on)	Turn-on delay time		-	35	-	ns	
tr	Current rise time		-	16.1	-	ns	
(di/dt) _{on}	Turn-on current slope	$V_{CE} = 400 \text{ V}, \text{ I}_{C} = 30 \text{ A},$	-	1496	-	A/µs	
td(off)	Turn-off-delay time	$V_{GE} = 15 \text{ V}, \text{ R}_{G} = 10 \Omega,$ T _J = 175 °C (see Figure 22: "Test circuit for	-	158	-	ns	
tr	Current fall time		-	65	-	ns	
Eon ⁽¹⁾	Turn-on switching energy	inductive load switching")	-	175	-	mJ	
Eoff ⁽²⁾	Turn-off switching energy		-	572	-	mJ	
E _{ts}	Total switching energy		-	747	-	mJ	


Notes:

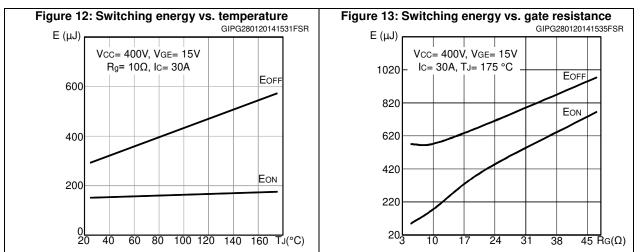

⁽¹⁾Including the reverse recovery of the diode. Turn-on times and energy have been measured applying as freewheeling an external SiC diode STPSC206W.


 $^{(2)}\mbox{Including the tail of the collector current.}$

2.1 Electrical characteristics (curves)

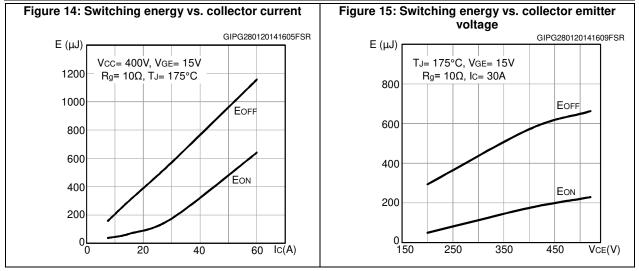

DocID030595 Rev 1

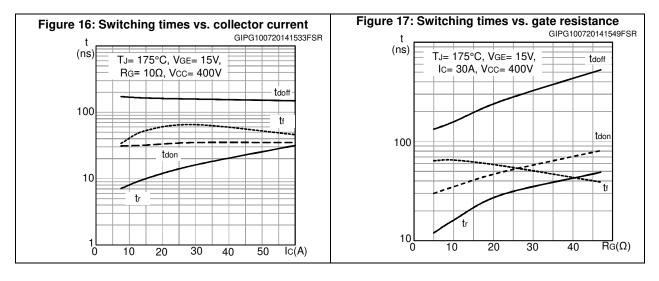


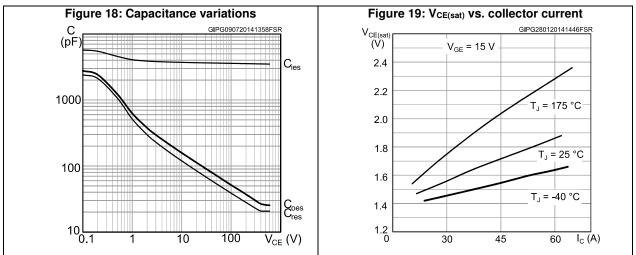

STGWA30H65FB

57

Electrical characteristics

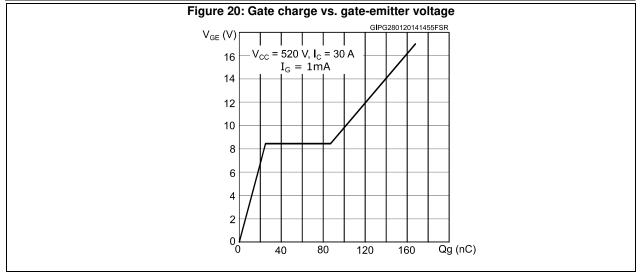


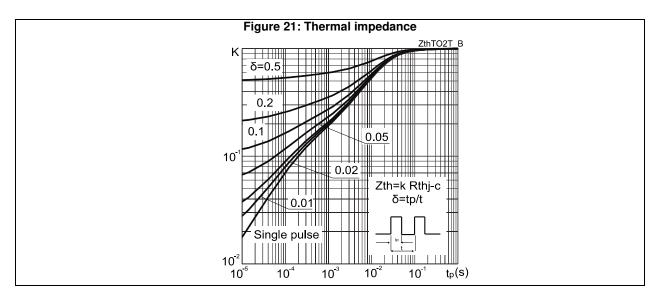



DocID030595 Rev 1

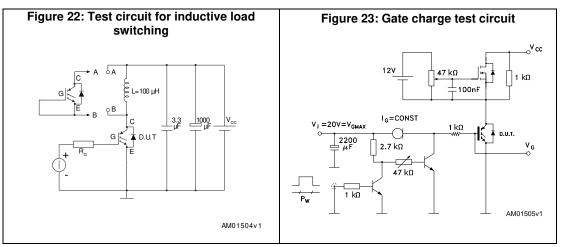
Electrical characteristics

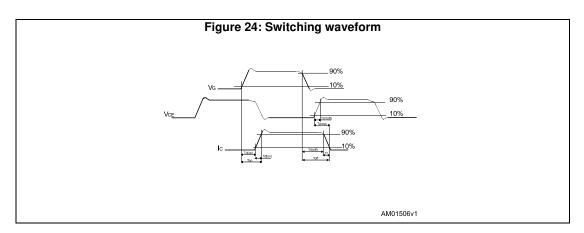
STGWA30H65FB




DocID030595 Rev 1

STGWA30H65FB


Electrical characteristics



3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 long leads package information

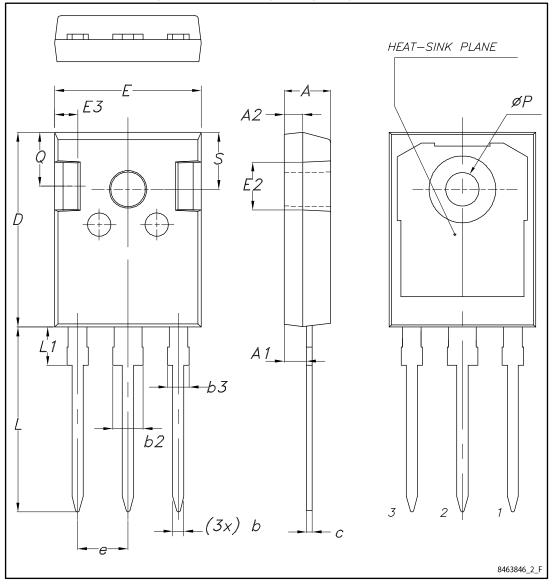


Figure 25: TO-247 long leads package outline

Package information

STGWA30H65FB

Table 7: TO-247 long leads package mechanical data					
Dim		mm			
Dim.	Min.	Тур.	Max.		
А	4.90	5.00	5.10		
A1	2.31	2.41	2.51		
A2	1.90	2.00	2.10		
b	1.16		1.26		
b2			3.25		
b3			2.25		
С	0.59		0.66		
D	20.90	21.00	21.10		
E	15.70	15.80	15.90		
E2	4.90	5.00	5.10		
E3	2.40	2.50	2.60		
е	5.34	5.44	5.54		
L	19.80	19.92	20.10		
L1			4.30		
Р	3.50	3.60	3.70		
Q	5.60		6.00		
S	6.05	6.15	6.25		

5 Revision history

Table 8: Document revision history

Date	Revision	Changes
10-May-2017	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

