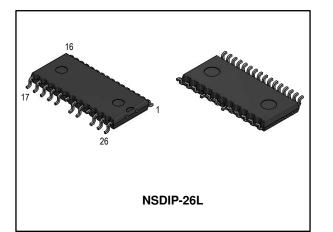
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SLLIMM[™]-nano small low-loss intelligent molded module IPM, 3-phase inverter, 1 A, 3.6 Ω max., 500 V MOSFET

Datasheet - production data

Features

- IPM 1 A, 500 V, R_{DS(on)}= 3.6 Ω, 3-phase MOSFET inverter bridge including control ICs for gate driving
- Optimized for low electromagnetic interference
- 3.3 V, 5 V, 15 V CMOS/TTL input comparators with hysteresis and pull-down/pull-up resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Comparator for fault protection against overtemperature and overcurrent
- Optimized pinout for easy board layout
- NTC for temperature control (UL 1434 CA 2 and 4)
- Moisture sensitive level (MSL) 3

Applications

- 3-phase inverters for small power motor drives
- Small appliance, roller shutters, heating systems, fans and pumps

Description

This SLLIMM (small low-loss intelligent molded module) nano provides a compact, highperformance AC motor drive in a simple, rugged design. It is composed of six MOSFETs and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is optimized for thermal performance and compactness in built-in motor applications, or other low power applications where assembly space is limited. This IPM includes a comparator that can be used to design a fast and efficient protection circuit. SLLIMM[™] is a trademark of STMicroelectronics.

Table 1: Device summary

Order code	Marking	Package	Packing
STIPNS1M50SDT-H	IPNS1M50SDT-H	NSDIP-26L	Tape and reel

January 2018

DocID031185 Rev 2

This is information on a product in full production.

Contents

Cor	ntents		
1	Internal	schematic diagram and pin configuration	3
2	Electric	al ratings	6
	2.1	Absolute maximum ratings	6
	2.2	Thermal data	6
3	Electric	al characteristics	7
	3.1	Inverter part	7
	3.2	Control part	9
		3.2.1 NTC thermistor	11
	3.3	Waveform definitions	12
4	Smart s	hutdown function	13
5	Applica	tion circuit example	15
	5.1	Guidelines	16
6	Package	e information	17
	6.1	NSDIP-26L package information	17
7	Revisio	n history	20

57

1 Internal schematic diagram and pin configuration

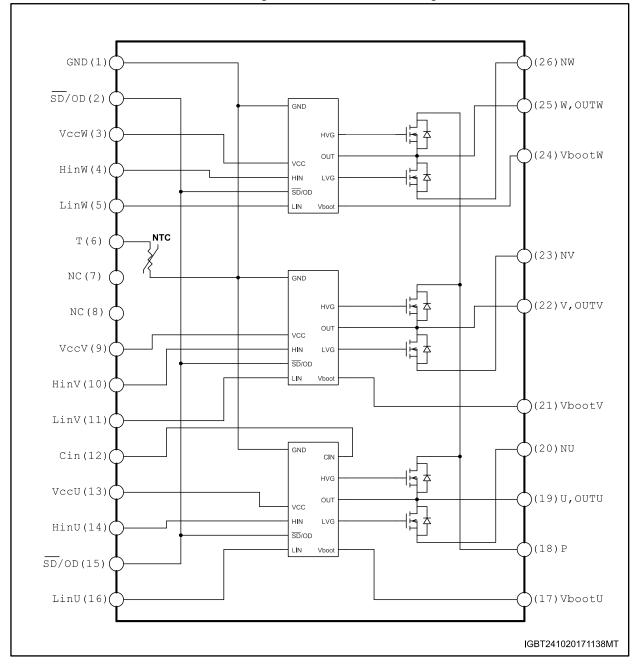
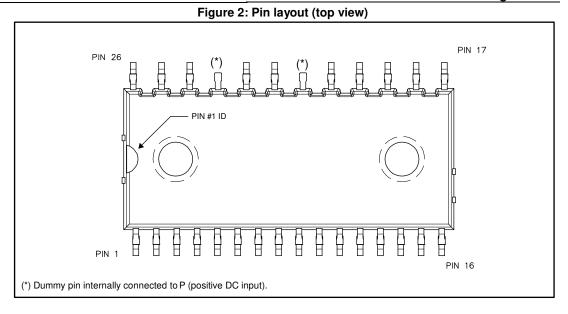


Figure 1: Internal schematic diagram


DocID031185 Rev 2

Internal schematic diagram and pin configuration

		Table 2: Pin description
Pin	Symbol	Description
1	GND	Ground
2	<u>SD</u> /OD	Shutdown logic input (active low) / open-drain (comparator output)
3	Vcc W	Low voltage power supply W phase
4	HIN W	High-side logic input for W phase
5	LIN W	Low-side logic input for W phase
6	Т	NTC thermistor terminal
7	NC	-
8	NC	-
9	Vcc V	Low voltage power supply V phase
10	HIN V	High-side logic input for V phase
11	LIN V	Low-side logic input for V phase
12	CIN	Comparator input
13	Vcc U	Low voltage power supply for U phase
14	HIN U	High-side logic input for U phase
15	$\overline{\text{SD}}/\text{OD}$	Shutdown logic input (active low) / open-drain (comparator output)
16	LIN U	Low-side logic input for U phase
17	V _{BOOT} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U, OUTu	U phase output
20	Νυ	Negative DC input for U phase
21	V _{BOOT} V	Bootstrap voltage for V phase
22	V, OUTv	V phase output
23	Nv	Negative DC input for V phase
24	VBOOT W	Bootstrap voltage for W phase
25	W, OUTw	W phase output
26	Nw	Negative DC input for W phase

Internal schematic diagram and pin configuration

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3: Inverter part					
Symbol	Parameter	Value	Unit		
V _{DSS}	MOSFET blocking voltage (or drain-source voltage) for each MOSFET $(V_{IN}^{(1)}=0)$	500	v		
± ID	Continuous current each MOSFET	1	Α		
± I _{DP} ⁽²⁾	Peak drain current each MOSFET (less than 1 ms)	2	Α		
P _{TOT}	Each MOSFET total dissipation at $T_C = 25 \text{ °C}$	10.8	W		

Notes:

 $^{(1)}\mbox{Applied}$ among HINi, LINi and GND for i = U, V, W.

 $\ensuremath{^{(2)}}\ensuremath{\mathsf{Pulse}}$ width limited by max. junction temperature.

Symbol	Parameter	Min.	Max.	Unit
Vout	Output voltage applied among OUT_U , OUT_V , OUT_W - GND	V _{boot} - 21	V _{boot} + 0.3	V
Vcc	Low voltage power supply	- 0.3	21	V
Vcin	Comparator input voltage	- 0.3	Vcc + 0.3	V
V _{boot}	Bootstrap voltage	- 0.3	620	V
V _{IN}	Logic input voltage applied among HIN, LIN and GND	- 0.3	15	V
V/SD/OD	Open-drain voltage	- 0.3	15	V
$\Delta V_{\text{OUT/dT}}$	Allowed output slew rate		50	V/ns

Table 4: Control part

Table 5: Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, $t = 60 s$)	1000	V
Tj	Power chip operating junction temperature range	-40 to 150	°C
Tc	Module case operation temperature range	-40 to 125	°C

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Value	Unit	
Rth(j-c)	Thermal resistance junction-case	11.5	°C/W	

3 Electrical characteristics

 $T_{\rm J}$ = 25 °C unless otherwise specified.

3.1 Inverter part

Table 7: Static						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
IDSS	Zero-gate voltage drain current				1	mA
V _{(BR)DSS}	Drain-source breakdown voltage		500			V
R _{DS(on)}	Static drain source turn-on resistance	$V_{CC} = V_{boot} = 15 V,$ $V_{IN}^{(1)} = 0.5 V, I_D = 0.5 A$		3.2	3.6	Ω
V _{SD}	Drain-source diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_D = 1 A$		0.9	1.6	V

Notes:

 $^{(1)}\mbox{Applied}$ among HINx, LINx and GND for x=U,V,W.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
ton ⁽¹⁾	Turn-on time		-	226	-			
t _{c(on)} ⁽¹⁾	Crossover time (on)	$V_{DD} = 300 V.$	-	130	-			
t _{off} ⁽¹⁾	Turn-off time	$V_{CC} = V_{boot} = 15 V,$ $V_{IN}^{(2)} = 0 - 5 V, I_C = 0.5 A$ (see Figure 4: "Switching time definition")	-	248	-	ns		
tc(off) ⁽¹⁾	Crossover time (off)		-	56	-			
trr	Reverse recovery time		-	155	-			
Eon	Turn-on switching energy		-	25	-	1		
Eoff	Turn-off switching energy		-	3.8	-	μJ		

Table 8: Inductive load switching time and energy

Notes:

 $^{(1)}t_{\text{ON}}$ and t_{OFF} include the propagation delay time of the internal drive. $t_{\text{C(ON)}}$ and $t_{\text{C(OFF)}}$ are the switching time of MOSFET itself under the internally given gate driving conditions.

 $^{(2)}\mbox{Applied}$ among HINx, LINx and GND for x=U,V,W.

Electrical characteristics

STIPNS1M50SDT-H

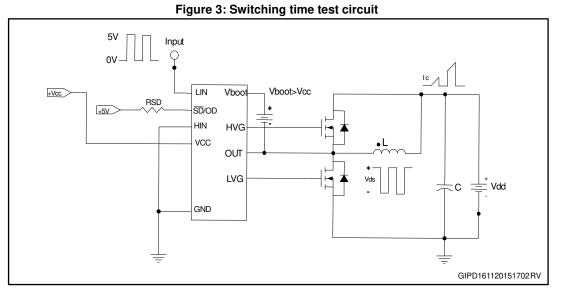
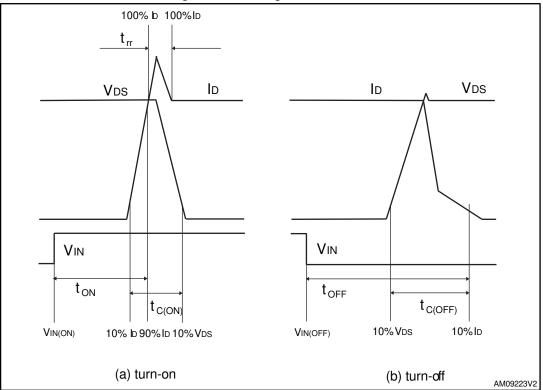



Figure 4: Switching time definition

3.2 Control part

 $(V_{CC} = 15 \text{ V unless otherwise specified}).$

Table	9: L	_ow	voltage	power	supply
	• • •		ronago	p 0 11 0 1	ouppij

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{CC_hys}	V _{CC} UV hysteresis		1.2	1.5	1.8	V
Vcc_thON	Vcc UV turn ON threshold		11.5	12	12.5	V
$V_{\text{CC_thOFF}}$	V _{CC} UV turn OFF threshold		10	10.5	11	V
I _{qccu}	Undervoltage quiescent supply current				150	μA
Iqcc	Quiescent current	$\label{eq:Vcc} \begin{split} V_{cc} &= 15 \ V, \ \overline{\mathrm{SD}} / \mathrm{OD} = 5 \ V; \\ \mathrm{LIN} &= 0 \ V; \ H_{\mathrm{IN}} = 0, \ \mathrm{C_{\mathrm{IN}}} = 0 \end{split}$			1	mA
Vref	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	V

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
V_{BS_thON}	V _{BS} UV turn-ON threshold		11.1	11.5	12.1	V
$V_{\text{BS_thOFF}}$	VBS UV turn-OFF threshold		9.8	10	10.6	V
I _{QBSU}	Undervoltage V _{BS} quiescent current	$\label{eq:BS} \begin{array}{l} V_{BS} < 9 \ V; \ \overline{\text{SD}} / \text{OD} = 5 \ V; \\ \text{LIN} = 0 \ V \ \text{and} \ \text{HIN} = 5 \ V; \\ C_{IN} = 0 \end{array}$		70	110	μΑ
I _{QBS}	V _{BS} quiescent current			200	300	μA
R _{DS(on)}	Bootstrap driver on- resistance	LVG ON		120		Ω

Table 11: Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vil	Low logic level voltage				0.8	V
Vih	High logic level voltage		2.25			V
I HINh	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μA
I _{HINI}	HIN logic "0" input bias current	HIN = 0 V			1	μA
ILINh	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μA
I _{LINI}	LIN logic "0" input bias current	LIN = 0 V			1	μA
I _{SDh}	SD logic "0" input bias current	$\overline{\text{SD}} = 15 \text{ V}$	220	295	370	μA
I _{SDI}	SD logic "1" input bias current	$\overline{\text{SD}} = 0 \text{ V}$			3	μA
Dt	Dead time	See Figure 7: "Dead time and interlocking waveform definitions"		180		ns

Electrical characteristics

STIPNS1M50SDT-H

	Table 12: Sense comparator characteristics							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
l _{ib}	Input bias current	V _{CIN} = 1 V			1	μA		
V_{od}	Open-drain low level output voltage	I _{od} = 3 mA			0.5	V		
Ron_od	Open-drain low level output resistance	I _{od} = 3 mA		166		Ω		
R _{PD_SD}	SD pull-down resistor ⁽¹⁾			125		kΩ		
td_comp	Comparator delay	$\overline{\text{SD}}$ /OD pulled to 5 V through 100 k Ω resistor		90	130	ns		
SR	Slew rate	C_L = 180 pF; R_{pu} = 5 k Ω		60		V/µs		
t _{sd}	Shutdown to high- / low-side driver propagation delay		50	125	200			
tisd	Comparator triggering to high- / low-side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	ns 250		

Notes:

⁽¹⁾Equivalent values as a result of the resistances of three drivers in parallel.

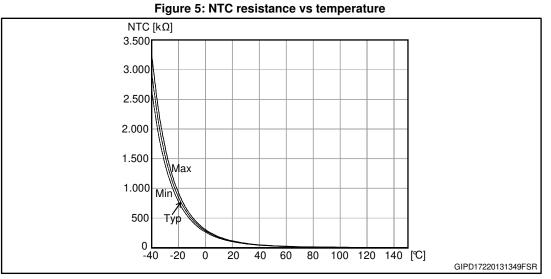
Table 13: Truth table

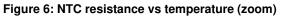
Condition	Logic input (VI)			Output		
Condition	SD /OD	LIN	HIN	LVG	HVG	
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L	
Interlocking half-bridge tri-state	Н	Н	Н	L	L	
0 "logic state" half-bridge tri-state	Н	L	L	L	L	
1 "logic state" low-side direct driving	Н	Н	L	Н	L	
1 "logic state" high-side direct driving	Н	L	Н	L	Н	

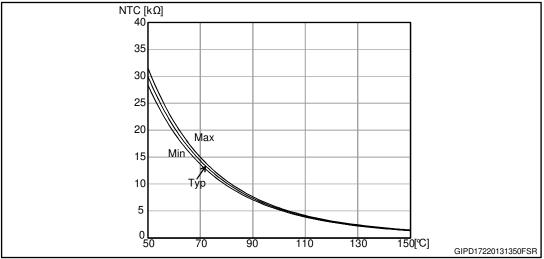
Notes:

⁽¹⁾X: don't care.

57


3.2.1 NTC thermistor


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
R25	Resistance	T = 25 °C		85		kΩ
R100	Resistance	T = 100 °C		5388		Ω
В	B-constant	T = 25 °C to 100 °C		4092		К
Т	Operating temperature		-25		125	°C


Table 14: NTC thermistor

 $R(T) = R_{25} \times e^{B\left(\frac{1}{T} - \frac{1}{298}\right)}$

Where T are temperatures in Kelvins

DocID031185 Rev 2

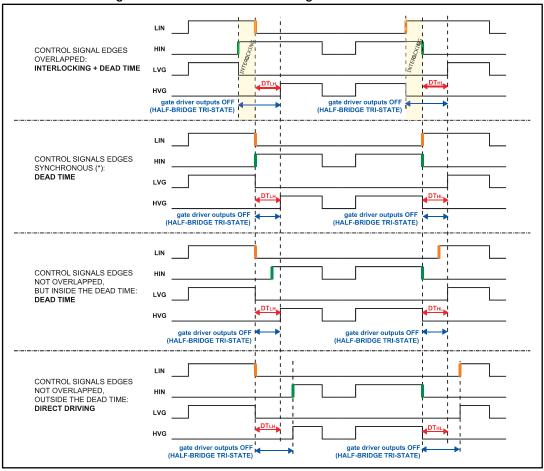
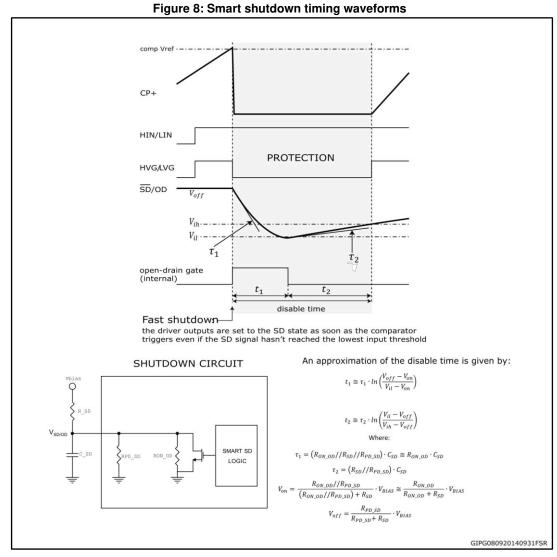


Figure 7: Dead time and interlocking waveform definitions

4 Smart shutdown function

The device integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{REF} connected to the inverting input, while the non-inverting input on pin (CIN) can be connected to an external shunt resistor for simple overcurrent protection.

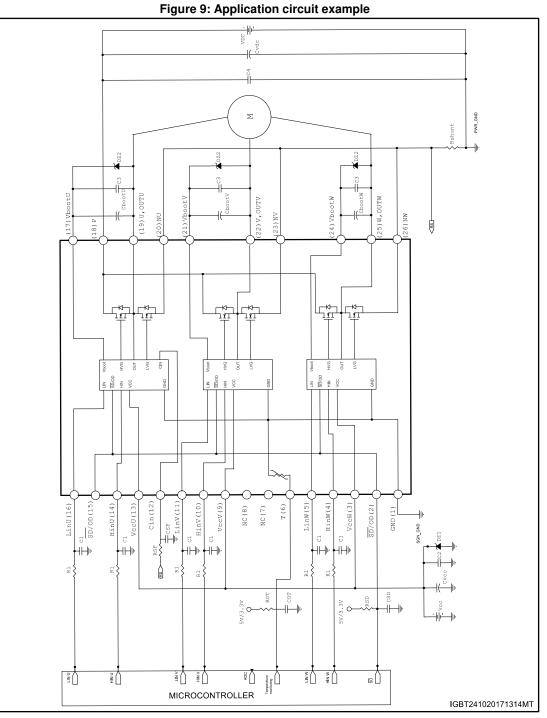
When the comparator triggers, the device is set to the shutdown state and both of its outputs are set to the low level, causing the half-bridge to enter a tri-state.


In common overcurrent protection architectures, the comparator output is usually connected to the shutdown input through an RC network so to provide a monostable circuit which implements a protection time following to a fault condition.

Our smart shutdown architecture immediately turns off the output gate driver in case of overcurrent through a preferential path for the fault signal which directly switches off the outputs. The time delay between the fault and output shutdown no longer depends on the RC values of the external network connected to the shutdown pin. At the same time, the DMOS connected to the open-drain output (pin \overline{SD}/OD) is turned on by the internal logic, which holds it on until the shutdown voltage is lower than the minimum value of logic input threshold.

Besides, the smart shutdown function allows the real disable time to be increased while the constant time of the external RC network remains as it is.

Smart shutdown function



Please refer to *Table 12: "Sense comparator characteristics"* for internal propagation delay time details.

57

5 Application circuit example

Application designers are free to use a different scheme according to the specifications of the device.

DocID031185 Rev 2

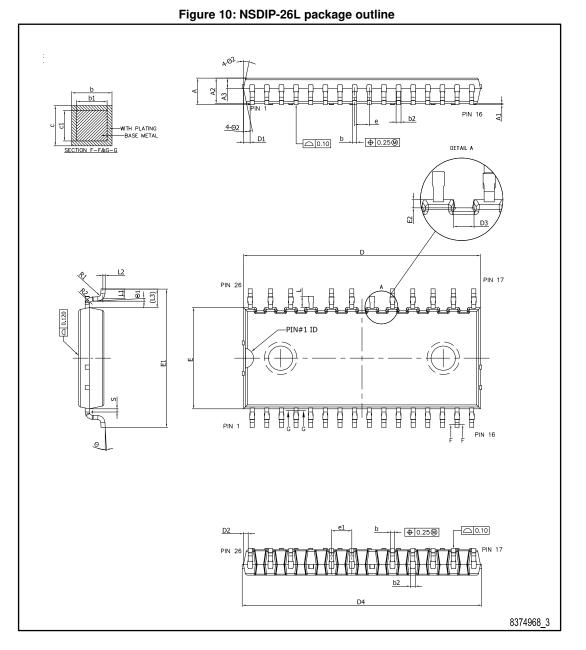
5.1 Guidelines

- Input signals HIN, LIN are active high logic. A 375 k Ω (typ.) pull-down resistor is builtin for each input. To prevent the input signal oscillation, the wiring of each input should be as short as possible and the use of RC filters (R₁, C₁) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- The use of a bypass capacitor CVCC (aluminum or tantalum) can help to reduce the transient circuit demand on the power supply. Besides, to reduce high frequency switching noise distributed on the power lines, a decoupling capacitor C₂ (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to V_{cc} pin and in parallel with the bypass capacitor.
- The use of RC filter (RSF, CSF) is recommended to avoid protection circuit malfunction. The time constant (RSF x CSF) should be set to 1 µs and the filter must be placed as close as possible to CIN pin.
- The SD is an input/output pin (open-drain type if it is used as output). The CSD capacitor of the filter on SD should be fixed no higher than 3.3 nF in order to ensure the SD activation time τ1 ≤ 500 ns; the filter should be placed as close as possible to the SD pin.
- The decoupling capacitor C₃ (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each C_{boot}, filters the high frequency disturbance. Both C_{boot} and C₃ (if present) should be placed as close as possible to the U, V, W and V_{boot} pins. Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires.
- To prevent the overvoltage on V_{cc} pin, a Zener diode (Dz1) can be used. Similarly on the V_{boot} pin, a Zener diode (Dz2) can be placed in parallel with each C_{boot}.
- The use of the decoupling capacitor C₄ (100 to 220 nF, with low ESR and low ESL), in parallel with the electrolytic capacitor C_{vdc} prevents surge destruction. Both capacitors C₄ and C_{vdc} should be placed as close as possible to the IPM (C₄ has priority over C_{vdc}).
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible.
- Low inductance shunt resistors should be used for phase leg current sensing.
- In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as possible.
- The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can help to reduce the impact of power ground fluctuation.

These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{PN}	Supply voltage	Applied among P-Nu, Nv, Nw		300	400	V
Vcc	Control supply voltage	Applied to Vcc-GND	13.5	15	18	V
V _{BS}	High-side bias voltage	Applied to V_{BOOTi} -OUT _i for i = U, V, W	13		18	V
t _{dead}	Blanking time to prevent arm-short	For each input signal	1			μs
fрwм	PWM input signal	-40 °C < T₀ < 100 °C -40 °C < Tј < 125 °C			25	kHz
Tc	Case operation temperature				100	°C

Table 15: Recommended operating conditions



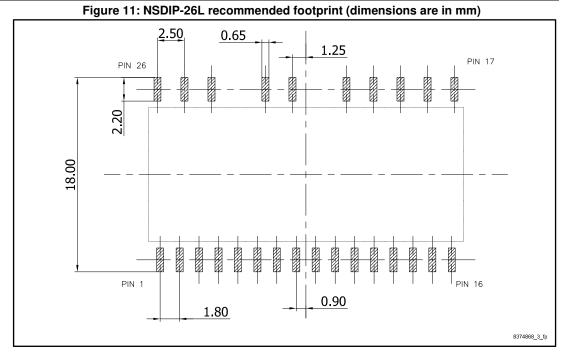
57

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 NSDIP-26L package information

DocID031185 Rev 2


Package information

STIPNS1M50SDT-H

formation STIPNS1M50SDT-H						
Table 16: NSDIP-26L package mechanical data						
Dim.		mm				
Dim.	Min.	Тур.	Max.			
Α			3.45			
A1	0.10		0.25			
A2	3.00	3.10	3.20			
A3	1.70	1.80	1.90			
b	0.47		0.57			
b1	0.45	0.50	0.55			
b2	0.63		0.67			
с	0.47		0.57			
c1	0.45	0.50	0.55			
D	29.05	29.15	29.25			
D1	0.70					
D2	0.45					
D3	0.90					
D4			29.65			
E	12.35	12.45	12.55			
E1	16.70	17.00	17.30			
E2	0.35					
е	1.70	1.80	1.90			
e1	2.40	2.50	2.60			
L	1.24	1.39	1.54			
L1	1.00	1.15	1.30			
L2		0.25 BSC				
L3		2.275 REF				
R1	0.25	0.40	0.55			
R2	0.25	0.40	0.55			
S		0.39	0.55			
θ	0°		8°			
Θ1		3° BSC				
Θ2	10°	12°	14°			

Package information

57

7 Revision history

Table 17: Document revision history

	Date	Revision	Changes
02-1	Nov-2017	1	Initial release.
08-	Jan-2018	2	Document status promoted from preliminary to production data

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

