## imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# STK433-060N-E

### Thick-Film Hybrid IC 2ch class-AB Audio Power IC 50W+50W

#### Overview

The STK433-060N-E is a hybrid IC designed to be used in 50W × 2ch class AB audio power amplifiers.

#### Application

• Audio Power amplifiers

#### Features

- Pin-to-pin compatible outputs ranging from 40W to 150W.
- Output load impedance:  $R_L = 6\Omega$  recommended.
- Allows the use of predesigned applications for standby and mute circuit.

#### Series model

|                                                     | STK433-040N-E  | STK433-060N-E       | STK433-130N-E     |  |  |  |  |  |  |  |  |
|-----------------------------------------------------|----------------|---------------------|-------------------|--|--|--|--|--|--|--|--|
| Output1 (10%/1kHz)                                  | $40W\times2ch$ | $50W\times 2ch$     | $150W \times 2ch$ |  |  |  |  |  |  |  |  |
| Output2 (0.4%/20Hz to 20kHz)                        | $25W\times2ch$ | 35W 	imes 2ch       | $100W\times 2ch$  |  |  |  |  |  |  |  |  |
| Max. rating V <sub>CC</sub> (quiescent)             | ±38V           | ±46V                | ±71.5V            |  |  |  |  |  |  |  |  |
| Max. rating V <sub>CC</sub> (6 $\Omega$ )           | ±36V           | ±40V                | ±63V              |  |  |  |  |  |  |  |  |
| Recommended operating V <sub>CC</sub> (6 $\Omega$ ) | ±24V           | ±27V                | ±44V              |  |  |  |  |  |  |  |  |
| Dimensions (excluding pin height)                   | 47.0mm×25.     | 67.0mm×25.6mm×9.0mm |                   |  |  |  |  |  |  |  |  |

|                                                     | STK433-330N-E           | STK433-840N-E       | STK433-890N-E       |
|-----------------------------------------------------|-------------------------|---------------------|---------------------|
| Output1 (10%/1kHz)                                  | $150W\times3ch$         | $40W\times4ch$      | 80W 	imes 4ch       |
| Output2 (0.4%/20Hz to 20kHz)                        | $100W\times 3\text{ch}$ | 25W 	imes 4ch       | 50W 	imes 4ch       |
| Max. rating V <sub>CC</sub> (quiescent)             | ±71.5V                  | ±38V                | ±54V                |
| Max. rating V <sub>CC</sub> (6 $\Omega$ )           | ±63V                    | ±36V                | ±47V                |
| Recommended operating V <sub>CC</sub> (6 $\Omega$ ) | ±44V                    | ±25V                | ±34V                |
| Dimensions (excluding pin height)                   | 64.0mm×36.6mm×9.0mm     | 64.0mm×31.1mm×9.0mm | 78.0mm×44.1mm×9.0mm |

#### Specifications

**Absolute Maximum Ratings** at  $Ta = 25^{\circ}C$ ,  $Tc = 25^{\circ}C$  unless otherwise specified

| Parameter                                | Symbol                  | Conditions                                                                                 | Ratings      | Unit |
|------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|--------------|------|
| Maximum power supply voltage             | V <sub>CC</sub> max (0) | Non- signal                                                                                | ±46          | V    |
|                                          | V <sub>CC</sub> max (1) | Signal, $R_L \ge 6\Omega$                                                                  | ±40          | V    |
|                                          | V <sub>CC</sub> max (2) | Signal, $R_L \ge 4\Omega$                                                                  | ±33          | V    |
| Minimum operation supply voltage         | V <sub>CC</sub> min     |                                                                                            | ±10          | V    |
| #13 Operating voltage *5                 | VST OFF max             | #13 voltage                                                                                | -0.3 to +5.5 | V    |
| Thermal resistance                       | өј-с                    | Per one power transistor                                                                   | 3.5          | °C/W |
| Junction temperature                     | Tj max                  | Should satisfy Tj max and Tc max                                                           | 150          | °C   |
| Operating substrate temperature          | Tc max                  |                                                                                            | 125          | °C   |
| Storage temperature                      | Tstg                    |                                                                                            | -30 to +125  | °C   |
| Allowable time for load short-circuit *4 | ts                      | $V_{CC}$ = ±27V, R <sub>L</sub> = 6 $\Omega$ , f = 50Hz<br>P <sub>O</sub> = 35W, 1ch drive | 0.3          | s    |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

#### ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.



• Miniature package.

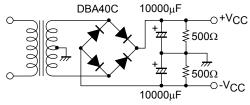
• Allowable load shorted time: 0.3 second

| operating enalaeten           |    |                                 | 23 C, R                |           |                       |            | <i>(a)</i> , 118 00 | 032, <b>T</b> O | 50 <b>u</b> D |     |       |  |
|-------------------------------|----|---------------------------------|------------------------|-----------|-----------------------|------------|---------------------|-----------------|---------------|-----|-------|--|
|                               |    |                                 |                        | C         | onditions *           |            |                     |                 |               |     |       |  |
| Parameter                     |    | Symbol                          | V <sub>CC</sub><br>[V] | f<br>[Hz] | P <sub>O</sub><br>[W] | THD<br>[%] |                     | min             | typ           | max | Unit  |  |
| Output power                  | *1 | P <sub>O</sub> 1                | ±27                    | 20 to 20k |                       | 0.4        |                     | 33              | 35            |     |       |  |
|                               |    | P <sub>O</sub> 2                | ±27                    | 1k        |                       | 10         |                     |                 | 50            |     | w     |  |
|                               |    | P <sub>O</sub> 3                | ±22                    | 1k        |                       | 1          | $R_L=4\Omega$       |                 | 35            |     |       |  |
| Total harmonic distortion     | *1 | THD 1                           | ±27                    | 20 to 20k |                       |            |                     |                 |               | 0.4 |       |  |
|                               |    | THD 2                           | ±27                    | 1k        | 5.0                   |            | VG=30dB             |                 | 0.02          |     | %     |  |
| Frequency characteristics     | *1 | f <sub>L</sub> , f <sub>H</sub> | ±27                    |           | 1.0                   |            | +0 -3dB             |                 | 20 to 50k     |     | Hz    |  |
| Input impedance               |    | ri                              | ±27                    | 1k        | 1.0                   |            |                     |                 | 55            |     | kΩ    |  |
| Output noise voltage          | *3 | V <sub>NO</sub>                 | ±33                    |           |                       |            | Rg=2.2kΩ            |                 |               | 1.0 | mVrms |  |
| Quiescent current             |    | Icco                            | ±33                    |           |                       |            | No load             | 15              | 30            | 70  | mA    |  |
| Quiescent current at stand-by |    | ICST                            | ±33                    |           |                       |            | VST=0V              |                 |               | 1.0 | mA    |  |
| Output neutral voltage        |    | VN                              | ±33                    |           |                       |            |                     | -70             | 0             | +70 | mV    |  |
| #13 Stand-by ON threshold     | *5 | VST ON                          | ±27                    |           |                       |            | Stand-by            |                 | 0             | 0.6 | V     |  |
| #13 Stand-by OFF threshold    | *5 | VST OFF                         | ±27                    |           |                       |            | Operation           | 2.5             | 3.0           | 5.5 | V     |  |

Note

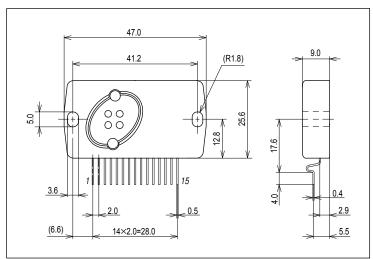
\*1. 1channel operation.

- \*2. All tests are measured using a constant-voltage supply unless otherwise specified
- \*3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- \*4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- \*5. The impression voltage of '#13 (Stand-By) pin' must not exceed the maximum rating.
- Power amplifier operate by impressing voltage +2.5 to +5.5V to '#13 (Stand-By) pin'.
- \* Please connect  $PreV_{CC}$  pin (#1 pin) with the stable minimum voltage.


and connect so that current does not flow in by reverse bias.

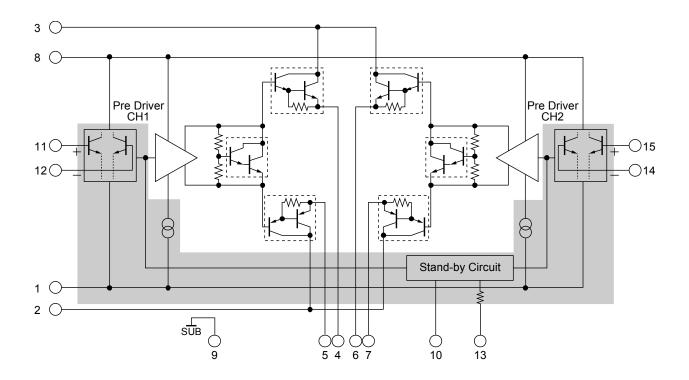
- \* In case of heat sink design, we request customer to design in the condition to have assumed market.
- \* The case of this Hybrid-IC is using thermosetting silicon adhesive (TSE322SX).

\* Weight of HIC : (typ) 12.0g

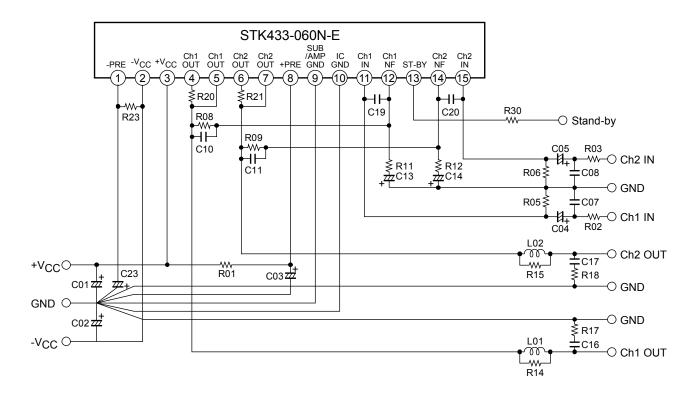

Outer carton dimensions (W×L×H) : 452mm×325mm×192mm

Specified transformer power supply (Equivalent to MG-200)



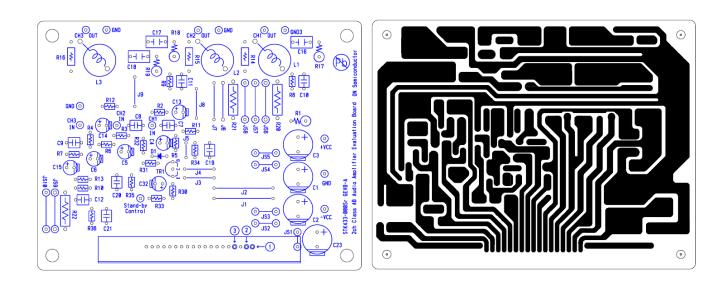

### Package Dimensions

unit : mm (typ)




RoHS directive pass

#### **Equivalent Circuit**




#### **Application Circuit**



#### PCB Layout Example

Top view



#### STK433-040N-E/060N-E/130N-E/330N-E PCB PARTS LIST

#### PCB Name : STK433 - 000Sr GEVB - A

| Loca                             | tion No.                   |                           |           |               |                   |  |  |  |  |  |
|----------------------------------|----------------------------|---------------------------|-----------|---------------|-------------------|--|--|--|--|--|
|                                  | o doesn't mount<br>of () . | RATING                    | Component |               |                   |  |  |  |  |  |
|                                  |                            |                           | STK433-   |               |                   |  |  |  |  |  |
| Hybrid IC#1 Pin Posi             | ition                      | -                         | 040N-E    | 060N-E        | 130N-E/<br>330N-E |  |  |  |  |  |
| R01                              |                            | 100Ω, 1W                  |           | 0             |                   |  |  |  |  |  |
| R02, R03, (R04)                  |                            | 1kΩ, 1/6W                 |           | 0             |                   |  |  |  |  |  |
| R05, R06, (R07), R0              | 8, R09, (R10)              | 56KΩ, 1/6W                |           | 0             |                   |  |  |  |  |  |
| R11, R12, (R13)                  |                            | 1.8KΩ, 1/6W               |           | 0             |                   |  |  |  |  |  |
| R14, R15, (R16)                  |                            | 4.7Ω, 1/4W                |           | 0             |                   |  |  |  |  |  |
| R17, R18, (R19)                  |                            | 4.7Ω, 1W                  |           | 0             |                   |  |  |  |  |  |
| R20, R21, (R22)                  |                            | 0.22Ω, 2W                 | 0         | 0             | -                 |  |  |  |  |  |
|                                  |                            | 0.22Ω, 5W                 | -         | -             | 0                 |  |  |  |  |  |
| C01, C02, C03, C23               |                            | 100μF, 100V               | 0         |               |                   |  |  |  |  |  |
| C04, C05, (C06)                  |                            | 2.2μF, 50V                |           | 0             |                   |  |  |  |  |  |
| C07, C08, (C09)                  |                            | 470pF, 50V                |           | 0             |                   |  |  |  |  |  |
| C10, C11, (C12)                  |                            | 3pF, 50V                  |           | 0             |                   |  |  |  |  |  |
| C13, C14, (C15)                  |                            | 10μF, 16V                 | 0         |               |                   |  |  |  |  |  |
| C16, C17, (C18)                  |                            | 0.1μF, 50V                | 0         |               |                   |  |  |  |  |  |
| C19, C20, (C21)                  |                            | ***pF, 50V                | 100pF     | 56pF          | N.C.              |  |  |  |  |  |
| R34, R35, (R36)                  |                            | Jumper                    |           | Short         |                   |  |  |  |  |  |
| L01, L02, (L03)                  |                            | 3μΗ                       |           | 0             |                   |  |  |  |  |  |
|                                  | Tr1                        | $VCE \ge 75V, IC \ge 1mA$ |           | 0             |                   |  |  |  |  |  |
|                                  | D1                         | Di                        |           | 0             |                   |  |  |  |  |  |
| Stand-By                         | R30 (*2)                   | 2.7kΩ, 1/6W               |           | o <b>(*2)</b> |                   |  |  |  |  |  |
| Control                          | R31                        | 33kΩ, 1/6W                |           | 0             |                   |  |  |  |  |  |
| Circuit                          | R32                        | 1kΩ, 1/6W                 |           | 0             |                   |  |  |  |  |  |
|                                  | R33                        | 2kΩ, 1/6W                 |           | 0             |                   |  |  |  |  |  |
|                                  | C32                        | 33μF, 10V                 | 0         |               |                   |  |  |  |  |  |
| J1, J2, J3, J4, J5, J6           | , J8, J9                   | Jumper                    | 0         |               |                   |  |  |  |  |  |
| J7, JS2, JS3, JS4, J<br>JS8, JS9 | S5, JS7                    | -                         | -         |               |                   |  |  |  |  |  |
| JS6, JS10                        |                            | Jumper                    | 0         |               |                   |  |  |  |  |  |
| JS1 (R23)                        |                            | 100Ω, 1W                  | 0         |               |                   |  |  |  |  |  |

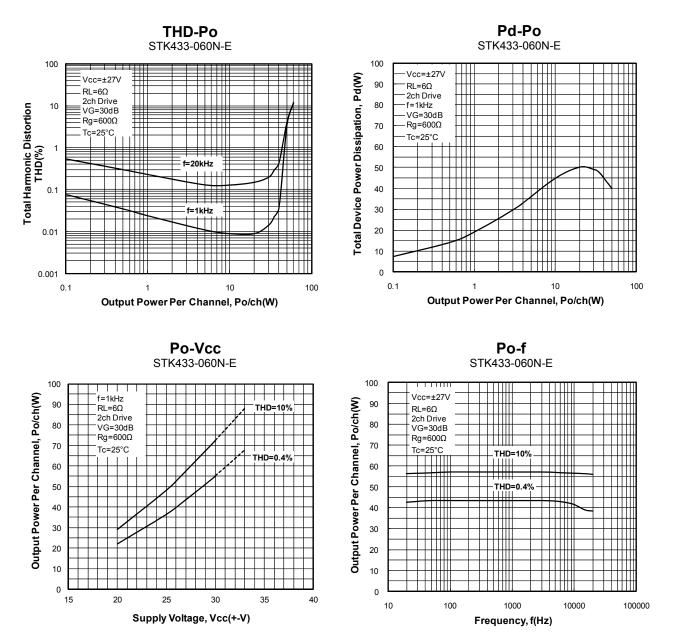
(\*1) STK433-040N-E/060N-E/130N-E (2ch Amp) doesn't mount parts of ( )

(\*2) Recommended standby circuit is used.

#### **Recommended external components**

#### STK433-040N-E/060N-E/130N-E/330N-E

| 0111100 0101  |                                                             |                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                         |  |  |  |  |
|---------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Parts         | Recommended                                                 | Circuit purpose                                                                                                                                                                                                                                | Above                                                                                                                                                    | Below                                                   |  |  |  |  |
| Location      | value                                                       |                                                                                                                                                                                                                                                | Recommended value                                                                                                                                        | Recommended value                                       |  |  |  |  |
| R01, R23      | 100Ω/1W                                                     | Resistance for Ripple filter. (Fuse resistance is recommended.                                                                                                                                                                                 | Short-through current                                                                                                                                    | Short-through current                                   |  |  |  |  |
|               |                                                             | Ripple filter is constituted with C03, C23.)                                                                                                                                                                                                   | may decrease at                                                                                                                                          | may increase at high                                    |  |  |  |  |
|               |                                                             |                                                                                                                                                                                                                                                | high frequency.                                                                                                                                          | frequency.                                              |  |  |  |  |
| R02, R03, R04 | 1kΩ                                                         | Resistance for input filters.                                                                                                                                                                                                                  | -                                                                                                                                                        | -                                                       |  |  |  |  |
| R05, R06, R07 | 56kΩ                                                        | Input impedance is determined.                                                                                                                                                                                                                 | Output neutral voltage()<br>(It is referred that R05=                                                                                                    |                                                         |  |  |  |  |
| R08, R09, R10 | 56k $\Omega$                                                | Voltage Gain (VG) is determined with R11, R12, R13                                                                                                                                                                                             | -                                                                                                                                                        | -                                                       |  |  |  |  |
| R11, R12, R13 | 1.8kΩ                                                       | Voltage Gain (VG) is determined with R8, R9, R10<br>(As for VG, it is desirable to set up by R11, R12, R13)                                                                                                                                    | lt may oscillate.<br>(Vg < 30dB)                                                                                                                         | With especially no problem                              |  |  |  |  |
| R14, R15, R16 | 4.7Ω                                                        | Resistance for oscillation prevention.                                                                                                                                                                                                         | -                                                                                                                                                        | -                                                       |  |  |  |  |
| R17, R18, R19 | 4.7Ω/1W                                                     | Resistance for oscillation prevention.                                                                                                                                                                                                         | _                                                                                                                                                        | _                                                       |  |  |  |  |
| R20, R21, R22 | 0.22Ω/2W<br>(040N-E,060N-E)<br>0.22Ω/5W<br>(130N-E,330N-E)  | This resistance is used as detection resistance of the protection circuit application.                                                                                                                                                         | Decrease of<br>Maximum output<br>Power                                                                                                                   | It may cause thermal<br>runaway                         |  |  |  |  |
| R30           | Note *5                                                     | Select Restriction resistance, for the impression voltage of '#17 rating.                                                                                                                                                                      | (Stand-By) pin' must no                                                                                                                                  | t exceed the maximum                                    |  |  |  |  |
| C01, C02      | 100μF/50V                                                   | <ul> <li>Capacitor for oscillation prevention.</li> <li>Locate near the HIC as much as possible.</li> <li>Power supply impedance is lowered and stable operation of the IC is carried out. (Electrolytic capacitor is recommended.)</li> </ul> | -                                                                                                                                                        | -                                                       |  |  |  |  |
| C03, C23      | 100μF/50V                                                   | <ul> <li>Decoupling capacitor</li> <li>The Ripple ingredient mixed in an input side Is removed from a power supply line. (Ripple filter is constituted with R01, R23.)</li> </ul>                                                              | The change in the Ripple ingredient mixed in<br>an input side from a power supply line                                                                   |                                                         |  |  |  |  |
| C04, C05, C06 | 2.2µF/50V                                                   | Input coupling capacitor.(for DC current prevention.)                                                                                                                                                                                          |                                                                                                                                                          | -                                                       |  |  |  |  |
| C07, C08, C09 | 470pF                                                       | <ul><li>Input filter capacitor</li><li>A high frequency noise is reduced with the filter constituted by<br/>R02, R03, R04</li></ul>                                                                                                            |                                                                                                                                                          | -                                                       |  |  |  |  |
| C10, C11, C12 | 3pF                                                         | Capacitor for oscillation prevention.                                                                                                                                                                                                          | It may oscillate.                                                                                                                                        |                                                         |  |  |  |  |
| C13, C14, C15 | 10μF/10V                                                    | Negative feedback capacitor.<br>The cutoff frequency of a low cycle changes.<br>(fL = $1/(2\pi \cdot C13 \cdot R11)$ )                                                                                                                         | The voltage gain (VG)<br>of low frequency is<br>extended. However,<br>the pop noise at the<br>time of a power<br>supply injection also<br>becomes large. | The voltage gain (VG)<br>of low frequency<br>decreases. |  |  |  |  |
| C16, C17, C18 | 0.1µF                                                       | Capacitor for oscillation prevention.                                                                                                                                                                                                          | It may oscillate.                                                                                                                                        | -                                                       |  |  |  |  |
| C19, C20, C21 | 100pF (040N-E)<br>56pF (060N-E)<br>N.C. (130N-E,<br>330N-E) | Capacitor for oscillation prevention.                                                                                                                                                                                                          | It may oscillate.                                                                                                                                        |                                                         |  |  |  |  |
| L01, L02, L03 | 3μΗ                                                         | Coil for oscillation prevention.                                                                                                                                                                                                               | With especially<br>no problem                                                                                                                            | It may oscillate.                                       |  |  |  |  |


Pin Layout [STK433-000N/-100N/-300Nsr Pin Layout]

| 151K433-000IN/-100IN/-300  | INSI | ГШ | Lay | outj   |        |        |        |        |        |      |        |        |        |        |        |        |        |        |        |
|----------------------------|------|----|-----|--------|--------|--------|--------|--------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                            | 1    | 2  | 3   | 4      | 5      | 6      | 7      | 8      | 9      | 10   | 11     | 12     | 13     | 14     | 15     |        |        |        |        |
| (Size) 47.0mm×25.6mm×9.0mm |      |    |     |        |        | 2cl    | n clas | sAB/   | 2.00r  | nm   |        |        |        |        |        |        |        |        |        |
| STK433-040N 40W/JEITA      | -    | -  | +   | 0      | 0      | 0      | 0      | +      |        |      | Ι      | Ν      | S      | Ν      | Т      |        |        |        |        |
| STK433-060N 50W/JEITA      | Р    | V  | V   | U      | U      | U      | U      | Ρ      | S      | G    | Ν      | F      | Т      | F      | Ν      |        |        |        |        |
|                            | R    | C  | C   | Т      | T      | Т      | T      | R<br>F | U      | N    | /      | /      | A      | /      | /      |        |        |        |        |
|                            | E    | С  | С   | ,<br>C | /<br>C | /<br>C | /<br>C | E      | В      | D    | С<br>Н | С<br>Н | N<br>D | С<br>Н | С<br>Н |        |        |        |        |
| (Size) 67.0mm×25.6mm×9.0mm |      |    |     | н      | н      | н      | н      |        |        |      | 1      | 1      |        | 2      | 2      |        |        |        |        |
| STK433-130N 150W/JEITA     |      |    |     | 1      | 1      | 2      | 2      |        |        |      |        |        | В      |        |        |        |        |        |        |
|                            |      |    |     | +      | -      | +      | -      |        |        |      |        |        | Y      |        |        |        |        |        |        |
|                            |      |    |     |        |        |        |        |        |        |      |        |        |        |        |        |        |        |        |        |
|                            |      |    |     |        |        |        |        |        |        |      |        |        |        |        |        |        |        |        |        |
|                            | 1    | 2  | 3   | 4      | 5      | 6      | 7      | 8      | 9      | 10   | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     |
| (Size) 64.0mm×36.6mm×9.0mm |      |    |     |        |        |        |        | 3cl    | h clas | sAB/ | 2.00r  | nm     |        |        |        |        |        |        |        |
| STK433-330N 150W/JEITA     | -    | -  | +   | 0      | 0      | 0      | 0      | +      |        |      | Ι      | Ν      | S      | Ν      | Ι      | Ι      | Ν      | 0      | 0      |
|                            | Р    | V  | V   | U      | U      | U      | U      | Ρ      | S      | G    | Ν      | F      | Т      | F      | Ν      | Ν      | F      | U      | U      |
|                            | R    | С  | С   | Т      | Т      | Т      | Т      | R      | U      | Ν    | /      | /      | А      | /      | /      | /      | /      | Т      | Т      |
|                            | E    | С  | С   | /      | /      | /      | /      | Е      | В      | D    | С      | С      | N      | С      | С      | С      | С      | /      | /      |
|                            |      |    |     | С<br>Н | С<br>Н | С<br>Н | С<br>Н |        |        |      | Н<br>1 | Н<br>1 | D      | Н<br>2 | Н<br>2 | Н<br>3 | Н<br>3 | С<br>Н | С<br>Н |
|                            |      |    |     | 1      | 1      | 2      | 2      |        |        |      |        | '      | B      | 2      | 2      | 5      | 5      | 3      | 3      |
|                            |      |    |     | +      | -      | +      | -      |        |        |      |        |        | Y      |        |        |        |        | +      | -      |
| -                          |      |    |     |        |        |        |        |        |        |      |        |        |        |        |        |        |        |        |        |
|                            |      |    |     |        |        |        |        |        |        |      |        |        |        |        |        |        |        |        |        |
|                            |      |    |     |        |        |        |        |        |        |      |        |        |        |        |        |        |        |        |        |

#### [STK433-000N/-100N/-800Nsr Pin Layout]

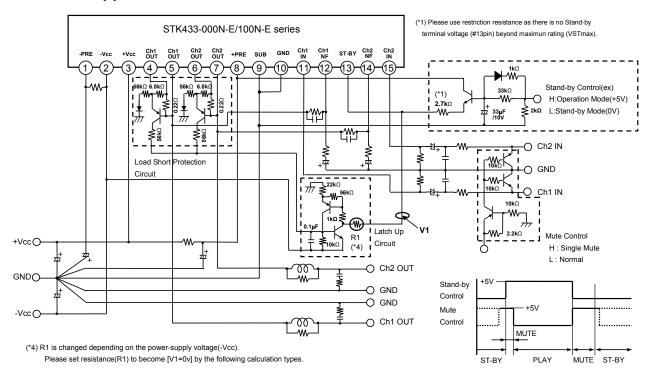
|                            | 1,01 |   | Lay | out    |        |        |        |       |       |    |        |        | r      |        |        |    |    |    |    |    |    |    |    |
|----------------------------|------|---|-----|--------|--------|--------|--------|-------|-------|----|--------|--------|--------|--------|--------|----|----|----|----|----|----|----|----|
|                            | 1    | 2 | 3   | 4      | 5      | 6      | 7      | 8     | 9     | 10 | 11     | 12     | 13     | 14     | 15     |    |    |    |    |    |    |    |    |
| (Size) 47.0mm×25.6mm×9.0mm |      |   |     |        |        | 2c     | h clas | ssAB/ | 2.00r | nm |        |        |        |        |        |    |    |    |    |    |    |    |    |
| STK433-040N 40W/JEITA      | -    | - | +   | 0      | 0      | 0      | 0      | +     |       |    | Ι      | Ν      | S      | Ν      | I      |    |    |    |    |    |    |    |    |
| STK433-060N 50W/JEITA      | Р    | V | V   | U      | U      | U      | U      | Ρ     | S     | G  | Ν      | F      | Т      | F      | Ν      |    |    |    |    |    |    |    |    |
|                            | R    | С | С   | Т      | Т      | Т      | Т      | R     | U     | Ν  | 1      | /      | А      | /      | /      |    |    |    |    |    |    |    |    |
|                            | E    | С | С   | /      | /      | /      | /      | Е     | В     | D  | С      | С      | N      | С      | С      |    |    |    |    |    |    |    |    |
| (Size) 67.0mm×25.6mm×9.0mm |      |   |     | С<br>Н | С<br>Н | С<br>Н | С<br>Н |       |       |    | H<br>1 | Н<br>1 | D      | Н<br>2 | Н<br>2 |    |    |    |    |    |    |    |    |
| STK433-130N 150W/JEITA     |      |   |     | 1      | 1      | 2      | 2      |       |       |    |        |        | В      | _      |        |    |    |    |    |    |    |    |    |
|                            |      |   |     | +      | -      | +      | -      |       |       |    |        |        | Y      |        |        |    |    |    |    |    |    |    |    |
|                            |      |   |     |        |        |        |        |       |       |    |        |        |        |        |        |    |    |    |    |    |    |    |    |
|                            |      |   |     |        |        |        |        |       |       |    |        |        |        |        |        |    |    |    |    |    |    |    |    |
|                            | 1    | 2 | 3   | 4      | 5      | 6      | 7      | 8     | 9     | 10 | 11     | 12     | 13     | 14     | 15     | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| (Size) 64.0mm×31.1mm×9.0mm |      |   |     |        |        |        |        |       |       | 4c | h clas | sAB/   | '2.00r | nm     |        |    |    |    |    |    |    |    |    |
| STK433-840N 40W/JEITA      | -    | - | +   | 0      | 0      | 0      | 0      | +     |       |    | Ι      | Ν      | S      | Ν      | Ι      | Ν  | Ι  | Ι  | Ν  | 0  | 0  | 0  | 0  |
|                            | Р    | V | V   | U      | U      | U      | U      | Ρ     | s     | G  | Ν      | F      | Т      | F      | Ν      | F  | Ν  | Ν  | F  | U  | U  | U  | U  |
|                            | R    | С | С   | Т      | Т      | Т      | Т      | R     | U     | Ν  | 1      | 7      | А      | /      | 1      | /  | 1  | 1  | 1  | Т  | Т  | Т  | Т  |
|                            | Е    | С | С   | 1      | 1      | 1      | /      | Е     | В     | D  | С      | С      | Ν      | С      | С      | С  | С  | С  | С  | 1  | 1  | 1  | /  |
| (Size) 78.0mm×44.1mm×9.0mm |      |   |     | С      | С      | С      | С      |       |       |    | Н      | Н      | D      | Н      | Н      | Н  | Н  | Н  | Н  | С  | С  | С  | С  |
| · · · ·                    | -    |   |     | Н      | H      | Н      | Н      |       |       |    | 1      | 1      |        | 2      | 2      | 3  | 3  | 4  | 4  | Н  | Н  | Н  | Н  |
| STK433-890N 80W/JEITA      |      |   |     | 1      | 1      | 2      | 2      |       |       |    |        |        | B      |        |        |    |    |    |    | 3  | 3  | 4  | 4  |
|                            |      |   |     | +      | -      | +      | -      |       |       |    |        |        | Y      |        |        |    |    |    |    | -  | +  | -  | +  |
|                            |      |   |     |        |        |        |        |       |       |    |        |        |        |        |        |    |    |    |    |    |    |    |    |
|                            |      |   |     |        |        |        |        |       |       |    |        |        |        |        |        |    |    |    |    |    |    |    |    |

#### **Characteristic of Evaluation Board**



#### A Thermal Design Tip For STK433-060N-E Amplifier

| [Thermal Design Conditions]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The thermal resistance ( $\theta$ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| determined as follow:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $Pd \times \theta c - a + Ta < 125^{\circ}C \cdots (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Where Ta : the ambient temperature for the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Condition 2) The junction temperature of each power transistor should not exceed 150°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $Pd \times \theta c - a + Pd/N \times \theta j - c + Ta < 150^{\circ}C^{\circ} C^{\circ} C^$ |
| Where N : the number of transistors (two for 1 channel, ten for channel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\theta_j$ -c : the thermal resistance of each transistor (see specification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| divided by the number of transistors (N).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| From the formula (1) and (2), we will obtain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\theta c-a < (125 - Ta)/Pd$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\theta c - a < (150 - Ta)/Pd - \theta j - c/N$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [Example of Thermal Design]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Generally, the power consumption of actual music signals are being estimated by the continuous signal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $1/8 P_{O}$ max. (Note that the value of $1/8 P_{O}$ max may be varied from the country to country.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Sample of STK433-060N-E ; 35W×2ch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If V <sub>CC</sub> is $\pm 27$ V, and R <sub>L</sub> is 6 $\Omega$ , then the total power dissipation (Pd) of inside Hybrid IC is as follow;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Pd = 33W$ (at 4.375W output power, 1/8 of $P_O$ max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| There are four (4) transistors in Audio Section of this Hybrid IC, and thermal resistance ( $\theta$ j-c) of each transistor is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.5°C/W. If the ambient temperature (Ta) is guaranteed for 50°C, then the thermal resistance ( $\theta$ c-a) of a desired heat-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| sink should be;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| From (1)' $\theta c - a < (125 - 50)/33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| < 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

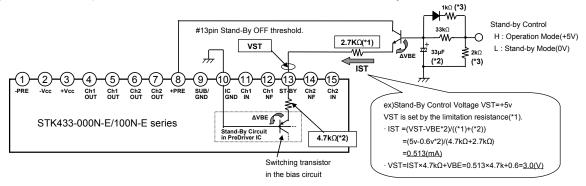

$$< 2.27$$
  
From (2)'  $\theta$ c-a < (150 - 50)/33 - 3.5/4  
< 2.16

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be 2.16°C/W.

#### [Note]

Above are reference only. The samples are operated with a constant power supply. Please verify the conditions when your system is actually implemented.

## STK433-000N-E/100N-E series Stand-by Control & Mute Control & Load-Short Protection Application




#### [STK433-000N-E/100N-E series Stand-By Control Example]

#### [Feature]

- The pop noise which occurs to the time of power supply on/off can be improved substantially by recommendation Stand-By Control Application.
- Stand-By Control can be done by additionally adjusting the limitation resistance to the voltage such as micom, the set design is easy.

(Reference circuit) STK433-000N-E/100N-E series test circuit To Stand-By Control added +5V.



[Operation explanation] #13pin Stand-By Control Voltage VST

#### (1) Operation Mode

The switching transistor in the bias circuit turns on and places the amplifier into the operating mode, when 13pin (VST) voltage added above 2.5V (typ 3.0V).

#### (2) Stand-By Mode

When 13pin (VST) voltage is stopped (= 0V), the switching transistor in the bias circuit turn off, placing the amplifier into the standby mode.

- (\*1) The current limiting resistor must be used to ensure that stand-by pin (13pin) voltage does not exceed its maximum rated value VST max.
- (\*2) The pop noise level when the power is turned on can be reduced by setting the time constant with a capacitor in operating mode.
- (\*3) Determines the time constant at which the capacitor (\*2) is discharged in stand-by mode.

#### ORDERING INFORMATION

| Device        | Package            | Shipping (Qty / Packing) |
|---------------|--------------------|--------------------------|
| STK433-060N-E | SIP15<br>(Pb-Free) | 25 / Bulk Box            |

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.