: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

STK433-890N-E

Thick-Film Hybrid IC
 4ch class-AB Audio Power IC 80W×4ch

Overview

The STK433-890N-E is 4 channels class-AB audio frequency power amplifier hybrid IC.

Application

- Audio Power amplifiers

Features

- Pin-to-pin compatible outputs ranging from 40 W to 80 W .
- Output load impedance: $\mathrm{R}_{\mathrm{L}}=6 \Omega$ recommended.
- Allows the use of predesigned applications for standby and mute circuit.
- Miniature package.
- Allowable load shorted time: 0.3 second

Series model

	STK433-040N-E	STK433-060N-E	STK433-130N-E
Output1 $(10 \% / 1 \mathrm{kHz})$	$40 \mathrm{~W} \times 2 \mathrm{ch}$	$50 \mathrm{~W} \times 2 \mathrm{ch}$	$150 \mathrm{~W} \times 2 \mathrm{ch}$
Output2 $(0.4 \% / 20 \mathrm{~Hz}$ to 20 kHz$)$	$25 \mathrm{~W} \times 2 \mathrm{ch}$	$35 \mathrm{~W} \times 2 \mathrm{ch}$	$100 \mathrm{~W} \times 2 \mathrm{ch}$
Max. rating V_{CC} (quiescent)	$\pm 38 \mathrm{~V}$	$\pm 46 \mathrm{~V}$	$\pm 71.5 \mathrm{~V}$
Max. rating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 36 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 63 \mathrm{~V}$
Recommended operating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 24 \mathrm{~V}$	$\pm 27 \mathrm{~V}$	$\pm 44 \mathrm{~V}$
Dimensions (excluding pin height)	$47.0 \mathrm{~mm} \times 25.6 \mathrm{~mm} \times 9.0 \mathrm{~mm}$		$67.0 \mathrm{~mm} \times 25.6 \mathrm{~mm} \times 9.0 \mathrm{~mm}$

	STK433-330N-E	STK433-840N-E	STK433-890N-E
Output1 $(10 \% / 1 \mathrm{kHz})$	$150 \mathrm{~W} \times 3 \mathrm{ch}$	$40 \mathrm{~W} \times 4 \mathrm{ch}$	$80 \mathrm{~W} \times 4 \mathrm{ch}$
Output2 $(0.4 \% / 20 \mathrm{~Hz}$ to 20 kHz$)$	$100 \mathrm{~W} \times 3 \mathrm{ch}$	$25 \mathrm{~W} \times 4 \mathrm{ch}$	$50 \mathrm{~W} \times 4 \mathrm{ch}$
Max. rating $\mathrm{V}_{\mathrm{CC}}(q u i e s c e n t)$	$\pm 71.5 \mathrm{~V}$	$\pm 38 \mathrm{~V}$	$\pm 54 \mathrm{~V}$
Max. rating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 63 \mathrm{~V}$	$\pm 36 \mathrm{~V}$	$\pm 47 \mathrm{~V}$
Recommended operating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 44 \mathrm{~V}$	$\pm 25 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Dimensions $($ excluding pin height $)$	$64.0 \mathrm{~mm} \times 36.6 \mathrm{~mm} \times 9.0 \mathrm{~mm}$	$64.0 \mathrm{~mm} \times 31.1 \mathrm{~mm} \times 9.0 \mathrm{~mm}$	$78.0 \mathrm{~mm} \times 44.1 \mathrm{~mm} \times 9.0 \mathrm{~mm}$

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tc}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	$\mathrm{V}_{\text {CC }}$ max (0)	Non signal	± 54	V
	$V_{\text {CC }}$ max (1)	Signal, $\mathrm{R}_{\mathrm{L}} \geq 6 \Omega$	± 47	V
	$V_{C C}$ max (2)	Signal, $\mathrm{R}_{\mathrm{L}}=4 \Omega$	± 40	V
Minimum operation supply voltage	$V_{C C}$ min		± 10	V
\#13 Operating voltage *5	VST OFF max	\#13pin voltage	-0.3 to +5.5	V
Thermal resistance	өj-c	Per power transistor	2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction temperature	Tj max	Both the Tj max and Tc max conditions must be met.	150	${ }^{\circ} \mathrm{C}$
Operating substrate temperature	Tc max		125	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-30 to +125	${ }^{\circ} \mathrm{C}$
Allowable time for load short-circuit	ts	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 34 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6 \Omega, \mathrm{f}=50 \mathrm{~Hz} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~W}, 1 \mathrm{ch} \text { drive } \end{aligned}$	0.3	S

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet.

Operating Characteristics at $\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=6 \Omega$ (Non-inductive Load), $\mathrm{Rg}=600 \Omega, \mathrm{VG}=30 \mathrm{~dB}$

Parameter	Symbol	Conditions *2					Ratings			Unit
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ {[\mathrm{~V}]} \end{gathered}$	$\begin{gathered} \mathrm{f} \\ {[\mathrm{~Hz}]} \end{gathered}$	$\begin{aligned} & \mathrm{PO} \\ & \text { [W] } \end{aligned}$	$\begin{gathered} \hline \text { THD } \\ {[\%]} \\ \hline \end{gathered}$		min	typ	max	
Output power *1	PO^{1}	± 34	20 to 20k		0.6		47	50		W
	PO^{2}	± 34	1 k		10			80		
Total harmonic distortion *	THD 1	± 34	20 to 20k	5.0		VG=30dB			0.6	\%
	THD 2	± 34	1 k					0.02		
Frequency characteristics *1	$\mathrm{f}_{\mathrm{L}}, \mathrm{f}_{\mathrm{H}}$	± 34		1.0		+0-3dB	20 to 50k			Hz
Input impedance	ri	± 34	1k	1.0				55		$\mathrm{k} \Omega$
Output noise voltage *3	V_{NO}	± 40				$\mathrm{Rg}=2.2 \mathrm{k} \Omega$			1.0	mV rms
Quiescent current	${ }^{\text {I CCO }}$	± 40				No load	90	150	210	mA
Quiescent current at stand-by	${ }^{\text {I CST }}$	± 40				$\mathrm{VST}=0 \mathrm{~V}$			1.0	mA
Neutral voltage	V_{N}	± 40					-70	0	+70	mV
\#13 Stand-by ON threshold *5	VST ON	± 34				Stand-by		0	0.6	V
\#13 Stand-by OFF threshold *5	VST OFF	± 34				Operation	2.5	3.0	5.5	V

Note
*1. 1channel operation.
*2. All tests are measured using a constant-voltage supply unless otherwise specified
*3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply $(50 \mathrm{~Hz})$ should be used to eliminate the effects of AC primary line flicker noise
*4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
*5. The impression voltage of '\#13 (Stand-By) pin' must not exceed the maximum rating.
Power amplifier operate by impressing voltage +2.5 to +5.5 V to ' $\# 13$ (Stand-By) pin'.

* Please connect - PreVCC pin (\#1 pin) with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
* In case of heat sink design, we request customer to design in the condition to have assumed market.
* The case of this Hybrid-IC is using thermosetting silicon adhesive (TSE322SX).
* Weight of HIC : (typ) 37.0 g

Outer carton dimensions $(\mathrm{W} \times \mathrm{L} \times \mathrm{H}): 452 \mathrm{~mm} \times 325 \mathrm{~mm} \times 192 \mathrm{~mm}$

Specified transformer power supply
(Equivalent to MG-200)

Package Dimensions

unit : mm (typ)

RoHS directive pass

Equivalent Circuit

Application Circuit

PCB Layout Example

Top view

STK433-800NSr PCB PARTS LIST

PCB Name : STK433-800Sr GEVB - A

Location No.		RATING	Component	
		STK433-840N-E/890N-E		
Hybrid IC\#1 Pin Position			-	1
R01, R02		100 ${ }^{\text {, }} 1 \mathrm{~W}$	-	
R03, R04, R05, R06		$1 \mathrm{k} \Omega, 1 / 6 \mathrm{~W}$	\bigcirc	
R07, R08, R09, R10, R11, R12, R13, R14		$56 \mathrm{~K} \Omega$, 1/6W	\bigcirc	
R15, R16, R17, R18		1.8K Ω, 1/6W	-	
R19, R20, R21, R22		4.7 Ω, 1/4W	\bigcirc	
R23, R24, R25, R26		4.7 Ω, 1W	\bigcirc	
R27, R28, R29, R30		0.22S, 5 W	-	
R32, R33, R34, R35		Jumper	Short	
C01, C02, C03, C04		$100 \mu \mathrm{~F}, 100 \mathrm{~V}$	\bigcirc	
C05, C06, C07, C08		$2.2 \mu \mathrm{~F}, 50 \mathrm{~V}$	-	
C09, C10, C11, C12		470pF, 50V	\bigcirc	
C13, C14, C15, C16		$5 \mathrm{pF}, 50 \mathrm{~V}$	-	
C17, C18, C19, C20		$10 \mu \mathrm{~F}, 16 \mathrm{~V}$	\bigcirc	
C21, C22, C23, C24		$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	\bigcirc	
C25, C26, C27, C28		100pF, 50V	\bigcirc	
L01, L02, L03, L04		$3 \mu \mathrm{H}$	\bigcirc	
Stand-By Control Circuit	Tr1	VCE $\geq 50 \mathrm{~V}$, IC $\geq 10 \mathrm{~mA}$	-	
	D1	Di	-	
	R31	1.3k Ω, 1/6W	\bigcirc	
	R36	$33 \mathrm{k} \Omega$, 1/6W	\bigcirc	
	R37	1k Ω, 1/6W	-	
	R38	2k $\Omega, 1 / 6 \mathrm{~W}$	\bigcirc	
	C32	$33 \mu \mathrm{~F}, 10 \mathrm{~V}$	-	
J1, J2, J5, J6, J7, J10, J11,J12,J13		Jumper	\bigcirc	
		-		
		-		
		-		

Recommended external components

STK433-840N-E/890N-E

Parts Location	Recommended value	Circuit purpose	Above Recommended value	Below Recommended value
R01, R02	100ת/1W	Resistance for Ripple filters. (Fuse resistance is recommended. Ripple filter is constituted with C03, C04.)	Short-through current may decrease at high frequency.	Short-through current may increase at high frequency.
R03,R04,R05, R06	$1 \mathrm{k} \Omega$	Resistance for input filters.	-	-
$\begin{aligned} & \text { R07,R08,R09, } \\ & \text { R10 } \end{aligned}$	$56 \mathrm{k} \Omega$	Input impedance is determined.	Output neutral voltage (VN) shift. (It is referred that $\mathrm{R} 07=\mathrm{R} 11, \mathrm{R} 08=\mathrm{R} 12$, $R 09=R 13, R 10=R 14)$	
$\begin{aligned} & \text { R11,R12,R13, } \\ & \text { R14 } \end{aligned}$	$56 \mathrm{k} \Omega$	Voltage Gain (VG) is determined with R15, R16, R17, R18	-	-
$\begin{aligned} & \text { R15,R16,R17, } \\ & \text { R18 } \\ & \hline \end{aligned}$	$1.8 \mathrm{k} \Omega$	Voltage Gain (VG) is determined with R11, R12, R13, and R14. (As for VG, it is desirable to set up by R15, R16, R17, and R18.)	It may oscillate. $(\mathrm{Vg}<30 \mathrm{~dB})$	With especially no problem
$\begin{aligned} & \text { R19,R20,R21, } \\ & \text { R22 } \\ & \hline \end{aligned}$	4.7Ω	Resistance for oscillation prevention.	-	-
$\begin{aligned} & \text { R23,R24,R25, } \\ & \text { R26 } \end{aligned}$	4.7 Ω /1W	Resistance for oscillation prevention.	-	-
$\begin{aligned} & \text { R27,R28,R29, } \\ & \text { R30 } \end{aligned}$	$\begin{gathered} 0.22 \Omega \\ \pm 10 \%, 5 \mathrm{~W} \end{gathered}$	Output emitter resistor (Metal-plate Resistor is recommended.)	Decrease of Maximum output Power	It may cause thermal runaway
R31	Note *4	Select Restriction resistance, for the impression voltage of '\#13 rating.	Stand-By) pin' must no	xceed the maximum
C01, C02	100 $\mathrm{F} / 100 \mathrm{~V}$	Capacitor for oscillation prevention. - Locate near the HIC as much as possible. - Power supply impedance is lowered and stable operation of the IC is carried out. (Electrolytic capacitor is recommended.)	-	-
C03,C04	100 $\mathrm{F} / 100 \mathrm{~V}$	Decoupling capacitor - The Ripple ingredient mixed in an input side Is removed from a power supply line. (Ripple filter is constituted with R01, R02.)	The change in the Ripple ingredient mixed in an input side from a power supply line	
$\begin{aligned} & \text { C05,C06,C07, } \\ & \text { C08 } \end{aligned}$	$2.2 \mu \mathrm{~F} / 50 \mathrm{~V}$	Input coupling capacitor. (For DC current prevention.)		
$\begin{aligned} & \text { C09,C10,C11, } \\ & \text { C12 } \end{aligned}$	470pF	Input filter capacitor - A high frequency noise is reduced with the filter constituted by R03, R04, R05, R06.	-	
$\begin{aligned} & \text { C13,C14,C15, } \\ & \text { C16 } \\ & \hline \end{aligned}$	5pF	Capacitor for oscillation prevention.	It may oscillate.	
$\begin{aligned} & \text { C17,C18,C19, } \\ & \text { C20 } \end{aligned}$	10رF/10V	Negative feedback capacitor. The cutoff frequency of a low cycle changes. $(f L=1 /(2 \pi \cdot C 17 \cdot R 15))$	The voltage gain (VG) of low frequency is extended. However, the pop noise at the time of a power supply injection also becomes large.	The voltage gain (VG) of low frequency decreases.
$\begin{aligned} & \mathrm{C} 21, \mathrm{C} 22, \mathrm{C} 23, \\ & \mathrm{C} 24 \\ & \hline \end{aligned}$	$0.1 \mu \mathrm{~F}$	Capacitor for oscillation prevention.	It may oscillate.	
$\begin{aligned} & \mathrm{C} 25, \mathrm{C} 26, \mathrm{C} 27, \\ & \mathrm{C} 28 \\ & \hline \end{aligned}$	100pF	Capacitor for oscillation prevention.	It may oscillate.	
$\begin{aligned} & \text { L01,L02,L03, } \\ & \text { L04 } \end{aligned}$	$3 \mu \mathrm{H}$	Coil for oscillation prevention.	With especially no problem	It may oscillate.

Pin Layout

[STK433-000N/-100N/-800Nsr Pin Layout]

Characteristic of Evaluation Board

STK433-890N-E

A Thermal Design Tip For STK433-890N-E Amplifier

[Thermal Design Conditions]

The thermal resistance $(\theta \mathrm{c}-\mathrm{a})$ of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:
(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed $125^{\circ} \mathrm{C}$

$$
\begin{equation*}
\mathrm{Pd} \times \theta \mathrm{c}-\mathrm{a}+\mathrm{Ta}<125^{\circ} \mathrm{C} \tag{1}
\end{equation*}
$$

Where Ta : the ambient temperature for the system
(Condition 2) The junction temperature of each power transistor should not exceed $150^{\circ} \mathrm{C}$

$$
\begin{equation*}
\mathrm{Pd} \times \theta \mathrm{c}-\mathrm{a}+\mathrm{Pd} / \mathrm{N} \times \theta \mathrm{j}-\mathrm{c}+\mathrm{Ta}<150^{\circ} \mathrm{C} \tag{2}
\end{equation*}
$$

Where N : the number of transistors (two for 1 channel, ten for channel) $\theta \mathrm{j}-\mathrm{c}$: the thermal resistance of each transistor (see specification)
Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).
From the formula (1) and (2), we will obtain:

$$
\begin{align*}
& \theta \mathrm{c}-\mathrm{a}<(125-\mathrm{Ta}) / \mathrm{Pd} \tag{1}\\
& \theta \mathrm{c}-\mathrm{a}<(150-\mathrm{Ta}) / \mathrm{Pd}-\theta \mathrm{j}-\mathrm{c} / \mathrm{N}
\end{align*}
$$

The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.
Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of
$1 / 8 \mathrm{PO}$ max. (Note that the value of $1 / 8 \mathrm{P}_{\mathrm{O}}$ max may be varied from the country to country.)
(Sample of STK433-890N-E ; 50W $\times 4 \mathrm{ch}$)
If V_{CC} is $\pm 34 \mathrm{~V}$, and R_{L} is 6Ω, then the total power dissipation (Pd) of inside Hybrid IC is as follow;
$\mathrm{Pd}=99.0 \mathrm{~W}$ (at 6.25 W output power, $1 / 8$ of $\mathrm{P}_{\mathrm{O}} \max$)
There are eight (8) transistors in Audio Section of this Hybrid IC, and thermal resistance ($\theta \mathrm{j}-\mathrm{c}$) of each transistor is $2.1^{\circ} \mathrm{C} / \mathrm{W}$. If the ambient temperature (Ta) is guaranteed for $50^{\circ} \mathrm{C}$, then the thermal resistance $(\theta \mathrm{c}-\mathrm{a})$ of a desired heatsink should be;

$$
\begin{aligned}
& \text { From (1)', } \quad \begin{aligned}
\theta \mathrm{c}-\mathrm{a} & <(125-50) / 99.0 \\
& <0.76 \\
\text { From (2), } & \theta \mathrm{c}-\mathrm{a}
\end{aligned}<(150-50) / 99.0-2.1 / 8 \\
&<0.75
\end{aligned}
$$

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be $0.75^{\circ} \mathrm{C} / \mathrm{W}$.
[Note]
Above are reference only. The samples are operated with a constant power supply. Please verify the conditions when your system is actually implemented.

STK433-800 series Stand-by Control \& Mute Control \& Load-Short Protection Application

[STK433-800N-E series Stand-By Control Example]

[Feature]

- The pop noise which occurs to the time of power supply on/off can be improved substantially by recommendation Stand-By Control Application.
- Stand-By Control can be done by additionally adjusting the limitation resistance to the voltage such as micom, the set design is easy.
(Reference circuit) STK433-800N-E series test circuit To Stand-By Control added +5 V .

[Operation explanation] \#13pin Stand-By Control Voltage VST
(1) Operation Mode

The switching transistor in the bias circuit turns on and places the amplifier into the operating mode, when 13pin (VST) voltage added above 2.5 V (typ 3.0 V).
(2) Stand-By Mode

When 13pin (VST) voltage is stopped $(=0 \mathrm{~V})$, the switching transistor in the bias circuit turn off, placing the amplifier into the standby mode.
(*1) The current limiting resistor must be used to ensure that stand-by pin (13pin) voltage does not exceed its maximum rated value VST max.
(*2) The pop noise level when the power is turned on can be reduced by setting the time constant with a capacitor in operating mode.
(*3) Determines the time constant at which the capacitor (*2) is discharged in stand-by mode.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK433-890N-E	SIP23 (Pb-Free)	$25 /$ Bulk Box

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

