

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Thick Film Hybrid IC

2-phase Stepping Motor Driver

http://onsemi.com

Overview

The STK682-010-E is a hybrid IC for use as a Bipolar, 2-phase stepping motor driver with PWM current control.

Function

- Output on-resistance (High side 0.3 Ω , Low side 0.25 Ω , Total 0.55 Ω ; Ta = 25°C, I Ω = 2.5A)
- VMmax=36V(DC), Iopmax=3.0A
- 2, 1-2, W1-2, 2W1-2, 4W1-2, 8W1-2, 16W1-2, 32W1-2 phase excitation are selectable
- With built-in automatic half current maintenance energizing function
- Over current protection circuit
- Thermal shutdown circuit
- Input pull down resistance
- With reset pin and enable pin

Specifications

Absolute Maximum Ratings at Tc = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VMmax		36.0	V
Peak output current	lopmax		3.0	Α
Logic input voltage	VINmax		6.0	V
VREF input voltage	VREFmax		6.0	V
Operating substrate temperature	Тс		–20 to +105	°C
Storage temperature	Tstg		-40 to +125	°C

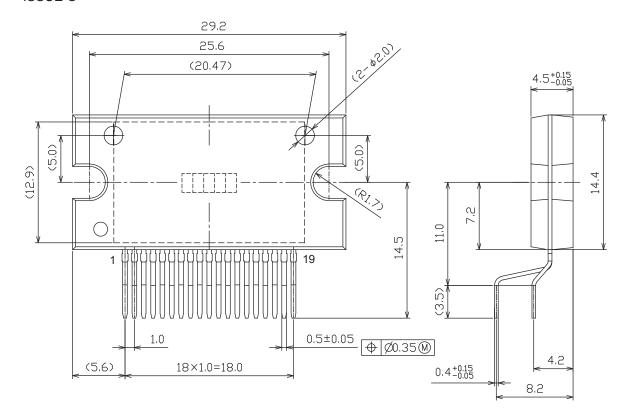
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

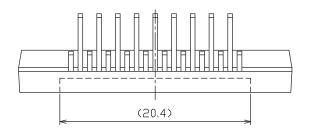
ORDERING INFORMATION

See detailed ordering and shipping information on page 20 of this data sheet.

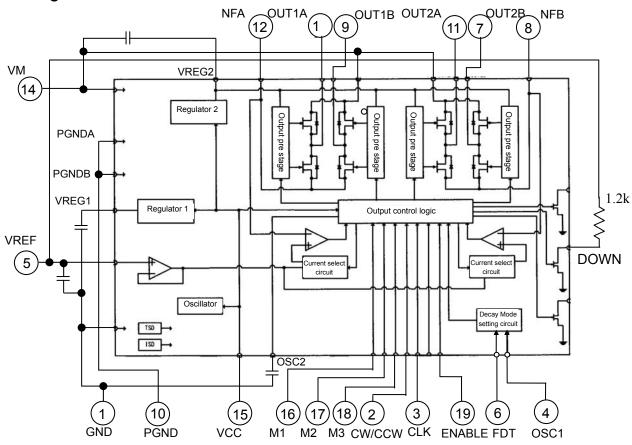
Recommended Operating Conditions at $Tc = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM		9.0 to 32.0	V
Logic input voltage range	VIN		0 to 5.0	V
VCC input voltage range	Vcc		0 to 5.0	V
VREF input voltage range	VREF		0 to 3.0	V
Output current1	lo1	1-2 Phase-ex, Tc ≤ 90°C	3.0	Α
Output current2	lo2	1-2 Phase-ex, Tc=105°C	2.5	Α
Output current3	lo3	2 Phase-ex, Tc=105°C	1.8	Α

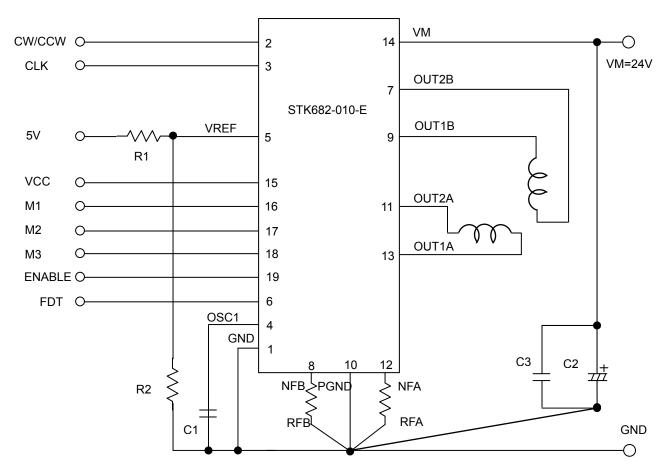

Electrical Characteristics at $Tc = 25^{\circ}C$, $V_{CC} = 5V$


Parameter	Symbol	Conditions		Unit		
	Syllibol		min	typ	max	Offic
Standby mode current drain	IMstn	VCC="L" VCC="H", ENABLE="H"		70	100	μΑ
Current drain	IM	No Load		3.3	4.6	mA
Thermal shutdown temperature	TSD	Design guarantee	150	180	210	°C
Thermal hysteresis width	ΔTSD	Design guarantee		40		°C
	linL1	VIN=0.8V	3	8	15	μΑ
Logic pin input current	linH1	VIN=5V	30	50	70	μΑ
VCC pin input current	VCC	15pin=5V	51	83	115	μΑ
Logic input high-level voltage	Vinh	Pins 2,3,16,17,18,19	2.0			V
Logic input low-level voltage	Vinl	Pins 2,3,16,17,18,19			0.8	V
FDT pin high-level voltage	Vfdth	Pin 6	3.5			٧
FDT pin middle-level voltage	Vfdtm	Pin 6	1.1		3.1	V
FDT pin low-level voltage	Vfdtl	Pin 6			0.8	V
Chopping frequency	Fch	C1=100pF	58	83	108	kHz
Chopping frequency	losc1			10		μΑ
Chopping oscillator circuit	Vtup1			1		٧
threshold voltage	Vtdown1			0.5		V
VREF pin input voltage	Iref	VREF=1.5V, CLK=10kHz	-0.5			μΑ
DOWN output residual voltage	VolDO	Idown=1mA, CLK=Low		40		mV
Hold current switching frequency	Falert			1.6		Hz
Blanking time	Tb1			1		μs
Output block						
	Ronu	I _O =2.0A, high-side ON resistance		0.30	0.42	Ω
Output on-resistance	Rond	I _O =2.0A, low-side ON resistance		0.25	0.35	Ω
Output leakage current	Ioleak	VM=36V			50	μΑ
Diode forward voltage	VD	ID=-2.0A		1.1	1.4	V
Current setting reference voltage	VRF	VREF=1.5V, Current ratio 100%		300		mV
Output short-circuit protection I	olock					
Timer latch time	Tscp			256		μs

Package Dimensions


unit: mm

SIP19 29.2x14.4 CASE 127CF ISSUE O



Block diagram

Application Circuit Example

Pin Functions

Pin No.	Pin symbol	Pin Functions								
1	GND	Circuit GND								
2	CW/CCW	Forward / Reverse signal input								
3	CLK	Clock pulse signal input								
4	OSC1	Chopping frequency setting capacitor connection								
5	VREF	Constant-current control reference voltage input								
6	FDT	Decay mode select voltage input								
7	OUT2B	B phase OUTB output								
8	NFB	B phase current sense resistance connection								
9	OUT1B	B phase OUTA output								
10	PGND	Power GND								
11	OUT2A	A phase OUTB output								
12	NFA	A phase current sense resistance connection								
13	OUT1A	A phase OUTA output								
14	VM	Motor supply connection								
15	VCC	Chip enable input								
16	M1									
17	M2	Excitation-mode switching pin								
18	M3									
19	ENABLE	Output enable signal input								

Equivalent circuit diagram

⊏quival€	equivalent circuit diagram											
Pin No.	Pin type	Equivalent Circuit Diagram										
3 2 19 18 17 16	CLK CW/CCW ENABLE M3 M2 M1	VREGIO 10KQ										
		Internal reset Input pin 100k D										
13 10 14 12 11 9 8 7	OUT1A PGND VM NFA OUT2A OUT1B NFB OUT2B											
5	VREF	DIE O										
4	OSC1	CNIDO 4										
6	FDT	72kΩ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ										

Description of functions

(1) Excitation setting method

Set the excitation setting as shown in the following table by setting M1 pin, M2 pin and M3 pin

	Input signal			Initial	oosition
M3	M2	M1	MODE (Excitation)		
				current	B phase current
L	L	L	2 Phase	100%	-100%
L	L	Н	1-2 Phase	100%	0%
L	Н	L	W1-2 Phase	100%	0%
L	Н	Н	2W1-2 Phase	100%	0%
Н	L	L	4W1-2 Phase	100%	0%
Н	L	Н	8W1-2 Phase	100%	0%
Н	Н	Ĺ	16W1-2 Phase	100%	0%
Н	Н	Н	32W1-2 Phase	100%	0%

The initial position is also the default state at start-up and excitation position at counter-reset in each excitation mode

(2) Output current setting

Output current is set as shown below by the VREF pin (applied voltage) and a resistance value between NFA (B) pin and GND.

IOUT = (VREF / 5) / NFA (B) resistance

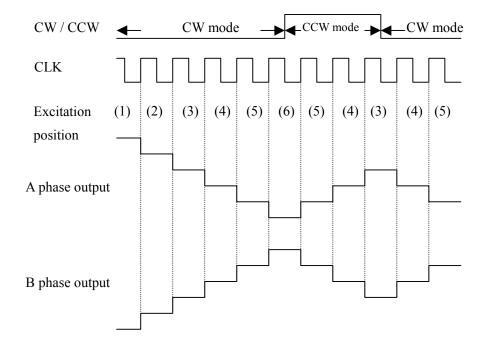
* The setting value above is a 100% output current in each excitation mode.

(Example) When VREF=1.5V and NFA (B) resistance is 0.3 Ω , the setting current is shown below. IOUT = (1.5 V / 5) / 0.3 Ω = 1.0 A

(3) Chip enable terminal/ VCC function

When Chip enable terminal/ V_{CC} pin is at low levels, the IC enters stand-by mode, all logic is reset and output is turned OFF.

When Chip enable terminal/ V_{CC} pin is at high levels, the stand-by mode is released

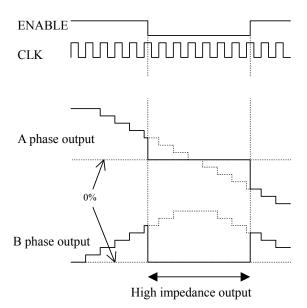

(4) Step pin function

CLK pin step signal input allows advancing excitation step

Int	out	Operation
VCC	CLK	
L	*	Stand-by mode
Н		Excitation step feed
Н		Excitation step hold

(5) Forward / reverse switching function

CW/CCW	Operation
L	CW
Н	CCW



The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the CLK pin. In addition, CW and CCW mode are switched by CW and CCW pin setting.

In CW mode, the B phase current is delayed by 90° relative to the A phase current. In CCW mode, the B phase current is advanced by 90° relative to the A phase current.

(6) Output enable function

When the ENABLE pin is set Low, the output is forced OFF and goes to high impedance. However, the internal logic circuits are operating, so the excitation position proceeds when the CLK is input. Therefore, when ENABLE pin is returned to High, the output level conforms to the excitation position proceeded by the CLK input.

(7) DECAY mode

The DECAY mode of the output current becomes only MIXED DECAY.

FDT voltage	DECAY method
3.5V to	SLOW DECAY
1.1V to 3.1V or OPEN	MIXED DECAY
to 0.8V	FAST DECAY

(8) Chopping frequency setting function

Chopping frequency is set as shown below by a capacitor between OSC1 pin and GND.

Fch =
$$1 / (C1+20pF / 10\times10^{-6})$$
 (Hz)

(Example) When Cosc1=100pF, the chopping frequency is shown below.

Fch =
$$1/((20+100)\times10^{-12}/10\times10^{-6})$$
 (Hz) = 83.3 (kHz)

Note

• The 20pF is a stray capacitance which is involved by the package of STK682-010-E.

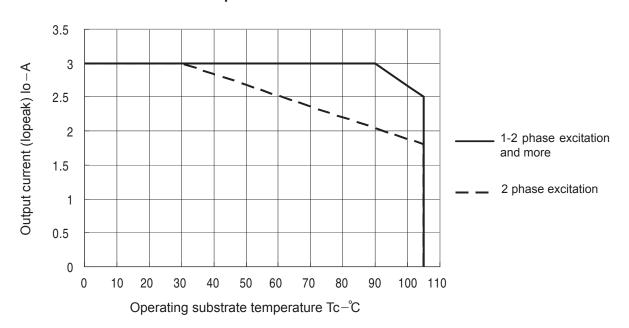
(9) Output short-circuit protection circuit

Build-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC from damaging when the output shorts circuit by a voltage short or a ground short, etc. When output short state is detected, short-circuit detection circuit starts the operating and output is once turned OFF. After the timer latch time (typ: $256\mu s$), output is turned ON again. Still the output is at short state, the output is turned OFF and fixed in stand-by mode.

When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting Chip enable terminal/ V_{CC} ="L"

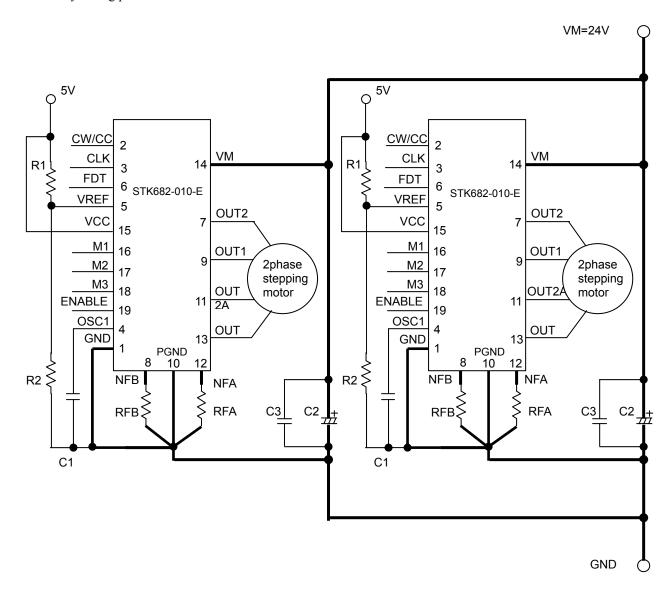
(10) Internal DOWN pin

The DOWN pin is an open drain connection.

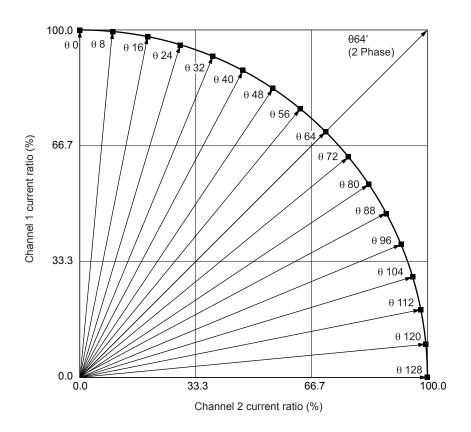

This pin is turned ON when no rising edge of CLK between the input signals while a period determined by a capacitor between OSC2 and GND, and outputs at low levels.

The DOWN pin output in once turned ON, is turned OFF at the next rising edge of CLK.

Holding current switching time (0.6sectyp) is set by an internal capacitor between OSC2 pin and GND.

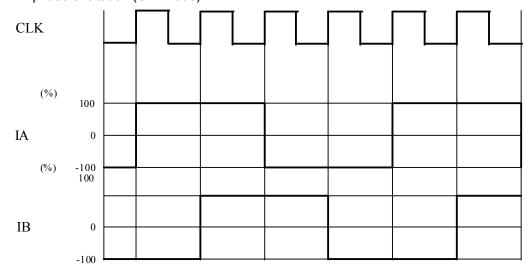

(11) Output current tolerance

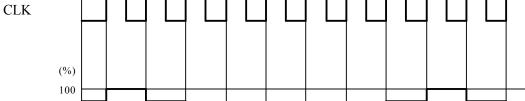
STK682-010-E Output current tolerance lo-Tc



(12) When mounting multiple drivers on a single PC board

When mounting multiple drivers on a single PC board, the GND design should mount a VCC decoupling capacitor, C2 and C3, for each driver to stabilize the GND potential of the other drivers. The key wiring points are as follows.

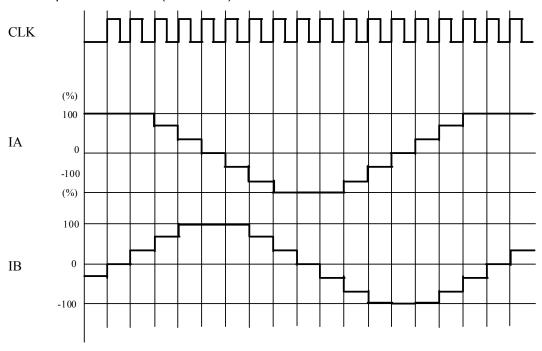

(13) Output current vector locus (1 step normalized 90°)

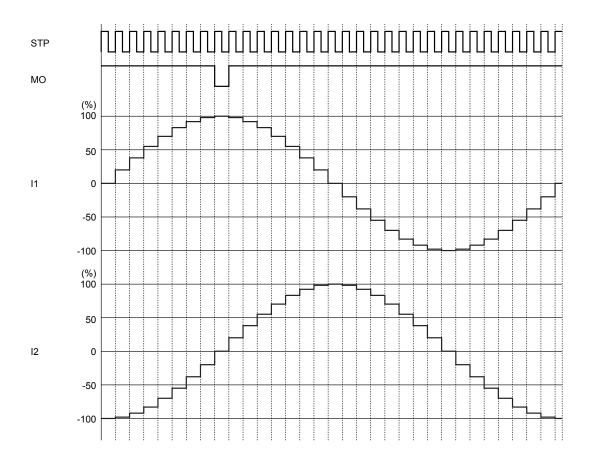


(14) Current setting ratio in each excitation mode

	221//1 2 -	nhana/%	16W1 2	phaeo(%	018/1 2 /	nhaea(%)	410/1 2 -	haco(%)	20/1 2 m	haco/%)	W/1 2 n	haco(%)	1-2 nh	200(%)	2 phas	ea/%)		2214/1 2	phase(%	161/12	nhaca(%	9M/1 2 n	haco(%)	4W4 2	haco(%)	20/4 2	obaca(%)	W12n	2000(%)	1-2 nh	200(%)	2 pha	ea(%)
STEP															Ach		STEP		Bch														
00	100	0						0				0					θ65	70						-									
θ1	100	1		Ť		Ť		Ť		Ť		Ť		Ť			θ66	69		69	72												
θ2	100	2	100	2													067	68															
θ3	100	4															869	67			74	67	74										
θ4	100	5	100	5	100	5											θ69	66															
θ5	100	6															θ70	65	76	65	76												
θ6	100	7	100	7													θ71	64	77														
θ7	100	9															θ72	63	77	63	77	63	77	63	77								
θ8	100	10	100	10	100	10	100	10									θ73	62															
θ9	99	11															θ74	62			79												
θ10	99	12		12													θ75	61															
θ11	99																θ76	60		60	80	60	80										
θ12	99	15		15	99	15											θ77	59															
θ13	99	16															θ78	58			82												
θ14	99			17													θ79	57															
θ15	98	18															080	56			83	56	83	56	83	56	83						
θ16	98			20	98	20	98	20	98	20							θ81	55															
θ17	98																θ82	53	84		84												Ь_
θ18	98	22		22								\Box					θ83	52			L .			<u> </u>									<u> </u>
θ19	97	23		L.,	L	L .	-					\vdash					θ84	51			86	51	86	<u> </u>									<u> </u>
θ20	97	24		24	97	24	L				\vdash	\vdash					θ85	50			L	ш		<u> </u>			\vdash				\Box		<u> </u>
θ21	97	25		L								ш					θ86	49			87	ш		-			Ь.						<u> </u>
θ22	96	27		27								ш					θ87	48			- 00	L .	00	L	00								<u> </u>
θ23	96	28			- 00	- 00	- 00	200				ш					θ88	47			88	47	88	47	88		-				\Box		<u> </u>
θ24	96	29	96	29	96	29	96	29									θ89	46			- 00	_											
θ25	95	30	0.5	24													θ90	45		45	89												
θ26 θ27	95	31		31	_												θ91	44		42	-00	40	-00				-				_		_
θ27 θ28	95 94	33 34	94	34	94	34											θ92 θ93	43 42		43	90	43	90								_		
θ29	94	35		34	94	34											θ94	41		41	91												
θ30	93	36		36	_												θ95	39		41	91										_		
θ31	93	37	93	30													θ96	38		38	92	38	92	38	92	38	92	38	92				
θ32	92	38	92	38	92	38	92	38	92	38	92	38					090	37			92	30	32	30	32	30	92	30	32				
θ33	92	39	92	30	92	30	92	30	32	30	32	30					098	36			93	\vdash									_		
θ34	91	41		41													θ99	35		00	- 50												
035	91	42		71													θ100	34		34	94	34	94								-		
036	90			43	90	43											θ101	33		<u> </u>	<u> </u>	Ů.	٠.										
θ37	90																θ102	31		31	95												
θ38	89			45													θ103	30															
039	89	46															θ104	29			96	29	96	29	96								
θ40	88	47		47	88	47	88	47									θ105	28															
θ41	88	48															θ106	27	96	27	96												
θ42	87	49		49													θ107	25	97														
θ43	86	50															θ108	24		24	97	24	97										
θ44	86	51		51	86	51											θ109	23															
θ45	85																θ110	22		22	98												
θ46	84	53	84	53													θ111	21	98														
θ47	84																θ112	20			98	20	98	20	98	20	98						
θ48	83	56		56	83	56	83	56	83	56							θ113	18				Ш											
049	82	57															θ114	17			99	تــــا											
θ50	82	58		58								ш					θ115	16				ш					آسا						
θ51	81	59															θ116	15			99	15	99										
θ52	80	60		60	80	60						ш					θ117	13			<u> </u>			L_									L_
θ53	80	61		L.	Ь_		<u> </u>					ш					θ118	12			99	ш		L			Ь						L
θ54	79		79	62	Ь_	Ь_	-					ш					θ119	11			122	لبا	400	٠.	400		\vdash				\Box		<u> </u>
θ55	78	62			L	- 00						\vdash					θ120	10		10	100	10	100	10	100		_						<u> </u>
056	77			63	77	63	77	63				ш					θ121	9		—	400	\vdash		<u> </u>			-				\Box		<u> </u>
θ57	77	64			<u> </u>	<u> </u>	!					Ш					θ122	7			100	\vdash		<u> </u>			—			\vdash			<u> </u>
θ58	76			65	<u> </u>	_	-				\vdash	\vdash					θ123	6			100	<u> </u>	100	<u> </u>			\vdash			\vdash	\vdash		<u> </u>
θ59	75			67	7.4	67	-				\vdash	\vdash					θ124	5			100	5	100	-			\vdash				\vdash		—
θ60 961	74			67	74	67	-	_				\vdash					θ125	4			100	\vdash		\vdash			-				-		\vdash
θ61 962	73	68		60	⊢	\vdash	-	\vdash	\vdash	—	\vdash	Н		-	\vdash		θ126	1	100	2	100	\vdash	—	\vdash	—	—	\vdash	\vdash		\vdash	-		\vdash
θ62 963	72 72	69 70		69	├	 	-				\vdash	\vdash					0127	0	100	^	100	_	100	_	100	^	100	_	100	_	100		\vdash
θ63 Θ64	71			71	71	71	71	71	71	71	71	71	71	71	100	100	θ128	- 0	100	U	100	H	100	\vdash	100	- 0	100	U	100	0	100		\vdash
θ64	/ 1	/ 1	1 / 1	71	71	71	/ /	/ 1	71	/ /	/	71	71	/ /	100	100		1	1	1			ı			1	1		1				

(15) Current wave example in each excitation mode (2 phase, 1-2 phase, W1-2 phase, 4W1-2 phase) 2 phase excitation (CW mode)

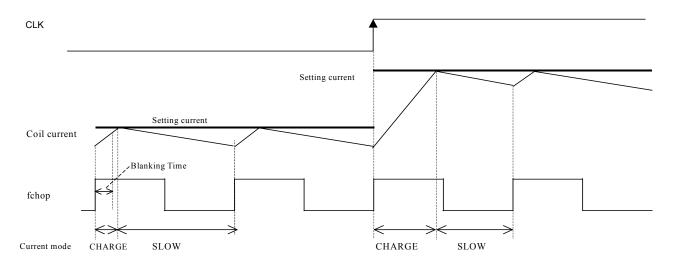



1-2 phase excitation (CW mode)

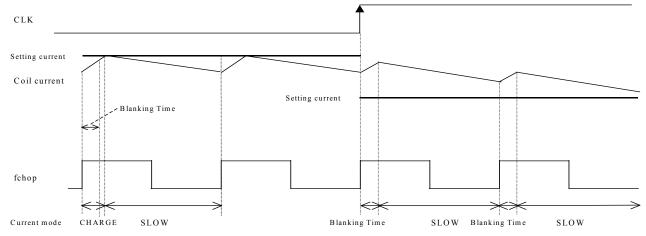
-100

W1-2 phase excitation (CW mode)

4W1-2 phase excitation (CW mode)



(16) Current control operation

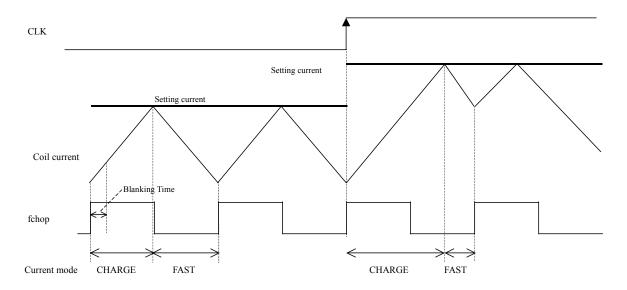

SLOW DECAY current control operation

When FDT pin voltage is a voltage over 3.5 V, the constant-current control is operated in SLOW DECAY mode.

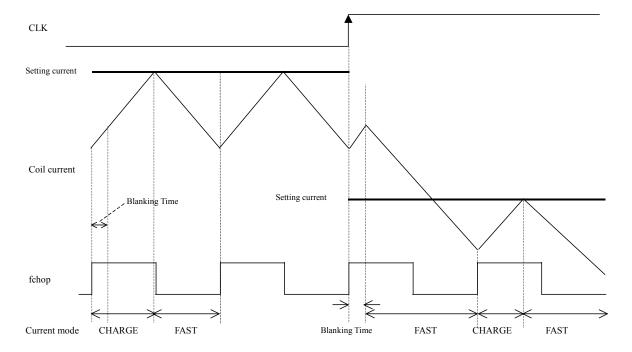
(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Each of current modes operates with the follow sequence.


- The IC enters CHARGE mode at a rising edge of the chopping oscillation. (A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1 µs, regardless of the current value of the coil current (ICOIL) and set current (IREF)).
- After the period of the blanking time, the IC operates in CHARGE mode until ICOIL ≥ IREF. After that, the mode switches to the SLOW DECAY mode and the coil current is attenuated until the end of a chopping period.

At the constant-current control in SLOW DECAY mode, following to the setting current from the coil current may take time (or not follow) for the current delay attenuation.


FAST DECAY current control operation

When FDT pin voltage is a voltage under 0.8V, the constant-current control is operated in FAST DECAY mode.

(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Each of current modes operates with the follow sequence.

The IC enters CHARGE mode at a rising edge of the chopping oscillation.

(A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1µs, regardless of the current value of the coil current (ICOIL) and set current (IREF)).

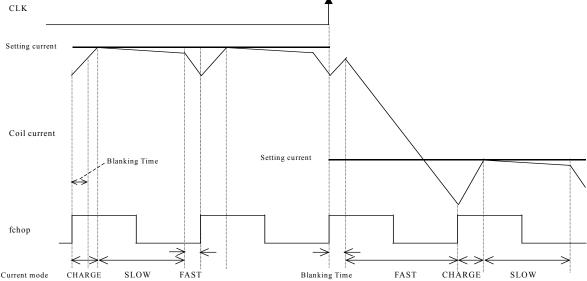
After the period of the blanking time, The IC operates in CHARGE mode until ICOIL \geq IREF. After that, the mode switches to the FAST DECAY mode and the coil current is attenuated until the end of a chopping period. At the constant-current control in FAST DECAY mode, following to the setting current from the coil current takes short-time for the current fast attenuation, but, the current ripple value may be higher.

(Sine-wave increasing direction) CLK Setting current Setting current Coil current Blanking Time fchop

CHARGE

SLOW

FAST


(Sine-wave decreasing direction)

CHARGE

Current mode

SLOW

FAST

Each of current modes operates with the follow sequence.

The IC enters CHARGE mode at a rising edge of the chopping oscillation.

(A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1 μs, regardless of the current value of the coil current (ICOIL) and set current (IREF)).

In a period of Blanking Time, the coil current (ICOIL) and the setting current (IREF) are compared.

If an ICOIL = IREF state exists during the charge period:

The IC operates in CHAGE mode until ICOIL ≥ IREF. After that, it switches to SLOW DECAY mode and then switches to FAST DECAY mode in the last approximately 1 µs of the period.

If no ICOIL = IREF state exists during the charge period:

The IC switches to FAST DECAY mode and the coil current is attenuated with the FAST DECAY operation until the end of a chopping period.

The above operation is repeated.

Normally, in the sine wave increasing direction the IC operates in SLOW (+FAST) DECAY mode, and in the sine wave decreasing direction the IC operates in FAST DECAY mode until the current is attenuated and reaches the set value and the IC operates in SLOW (+FAST) DECAY mode.

Power Dissipation

Power dissipation calculation of STK682-010-E following becomes.

2-phase excitation

 $Pd=IOH\times(Ronu+Rond)^2$

1-2-phase excitation

 $Pd=0.71\times IOH\times (Ronu + Rond)^2$

Please by substituting from electrical characteristic table value of Rond and Ronu.

Thermal design

[Operating range in which a heat sink is not used]

Use of a heat sink to lower the operating substrate temperature of the HIC (Hybrid IC) is effective in increasing the quality of the HIC.

The size of heat sink for the HIC varies depending on the magnitude of the average power loss, PdAV, within the HIC. The value of PdAV increases as the output current increases. To calculate PdAV, refer to "Calculating Internal HIC Loss for the STK672-640C-E in the specification document.

Calculate the internal HIC loss, PdAV, assuming repeat operation such as shown in Figure 1 below, since conduction during motor rotation and off time both exist during actual motor operations,

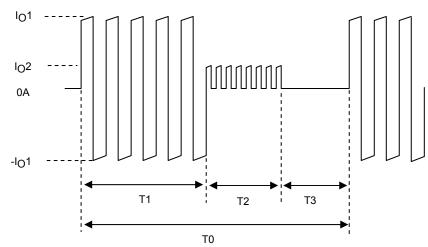


Figure 1 Motor Current Timing

T1: Motor rotation operation time

T2: Motor hold operation time

T3: Motor current off time

T2 may be reduced, depending on the application.

T0: Single repeated motor operating cycle

IO1 and IO2: Motor current peak values

Due to the structure of motor windings, the phase current is a positive and negative current with a pulse form.

Note that figure 1 presents the concepts here, and that the on/off duty of the actual signals will differ.

The hybrid IC internal average power dissipation PdAV can be calculated from the following formula.

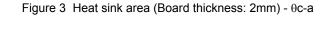
$$PdAV = (T1 \times P1 + T2 \times P2 + T3 \times 0) \cdot TO ---- (I)$$

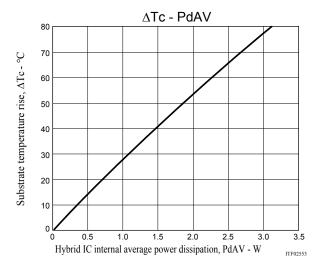
(Here, P1 is the PdAV for IO1 and P2 is the PdAV for IO2)

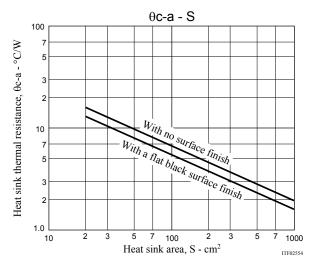
If the value calculated using Equation (I) is 1.5W or less, and the ambient temperature, Ta, is 60°C or less, there is no need to attach a heat sink. Refer to Figure 2 for operating substrate temperature data when no heat sink is used.

[Operating range in which a heat sink is used]

Although a heat sink is attached to lower Tc if PdAV increases, the resulting size can be found using the value of c-a in Equation (II) below and the graph depicted in Figure 3.

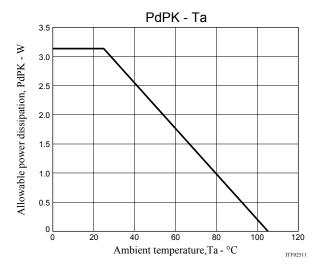

$$c-a = (Tc max-Ta) \cdot PdAV ---- (II)$$


Tc max: Maximum operating substrate temperature =105°C


Ta: HIC ambient temperature

Although a heat sink can be designed based on equations (I) and (II) above, be sure to mount the HIC in a set and confirm that the substrate temperature, Tc, is 105°C or less.

Figure 2 Substrate temperature rise, ΔTc (no heat sink) - Internal average power dissipation, PdAV



Mitigated Curve of Package Power Loss, PdPK, vs. Ambient Temperature, Ta Package power loss, PdPK, refers to the average internal power loss, PdAV, allowable without a heat sink. The figure below represents the allowable power loss, PdPK, vs. fluctuations in the ambient temperature, Ta. Power loss of up to 3.1W is allowable at Ta=25°C, and of up to 1.75W at Ta=60°C.

Allowable power dissipation, PdPK(no heat sink) - Ambient temperature, Ta

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK682-010-E	SIP-19 (Pb-Free)	15 / Tube

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa