imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

life.augmented

STL10LN80K5

N-channel 800 V, 0.59 Ω typ., 6 A MDmesh™ K5 Power MOSFET in a PowerFLAT™ 5x6 VHV package

Datasheet - production data

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STL10LN80K5	800 V	0.66 Ω	6 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

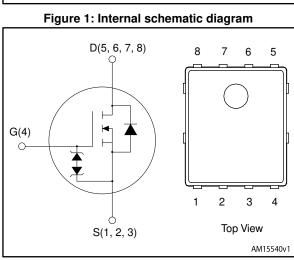

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL10LN80K5	10LN80K5	PowerFLAT™ 5x6 VHV	Tape and reel

1/17

This is information on a product in full production.

PowerFLAT™ 5x6 VHV	

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	PowerFLAT™ 5x6 VHV package information	11
	4.2	PowerFLAT™ 5x6 packing information	14
5	Revisio	n history	16

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
ID	Drain current (continuous) at $T_c = 25 \text{ °C}$	6	А
ID	Drain current (continuous) at T _c = 100 °C	3.8	А
ا _D ⁽¹⁾	Drain current pulsed	24	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	42	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature range	55 to 150	°C
T _{stg}	Storage temperature range	- 55 to 150	÷C

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area

 $^{(2)}I_{SD} \leq 6$ A, dv/dt ≤ 100 A/µs; V_Ds peak $< V_{(BR)DSS},$ V_DD=640 V

 $^{(3)}V_{DS} \le 640 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	3	°C/W
Rthj-amb ⁽¹⁾	Thermal resistance junction-ambient	59	°C/W

Notes:

 $^{(1)}\!When$ mounted on 1inch² FR-4 board, 2 oz Cu

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	2.7	А
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR},V_{DD} = 50 V)	240	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_{D} = 1 mA	800			V
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 800 V$			1	μA
		$V_{GS} = 0 V, V_{DS} = 800 V$ $T_{C} = 125 \text{ °C}^{(1)}$			50	μA
I _{GSS}	Gate body leakage current	$V_{\text{DS}} = 0 \ V, \ V_{\text{GS}} = \pm 20 \ V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{\text{DS}} = V_{\text{GS}}, \ I_{\text{D}} = 100 \ \mu\text{A}$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS}=10~V,~I_{D}=4~A$		0.59	0.66	Ω

Table 5: On/off-state

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	427	-	pF
C _{oss}	Output capacitance	$V_{DS} = 100 \text{ V}, \text{ f} = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	43	-	pF
C _{rss}	Reverse transfer capacitance	VGS = 0 V	-	0.25	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 640 V,	-	72	-	рF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0 V$		27	-	pF
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}$, $I_D = 0 \text{ A}$	-	7	-	Ω
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, \text{ I}_{D} = 8 \text{ A}$	-	15	-	nC
Q _{gs}	Gate-source charge	V_{GS} = 10 V	-	4.2	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16: "Test circuit for gate charge behavior")	-	9	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{(2)}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Electrical characteristics

Table 7: Switching times							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I_D = 4 A, R_G = 4.7 Ω	-	11.8	-	ns	
tr	Rise time	V _{GS} = 10 V (see <i>Figure 15: "Test</i>	-	10	-	ns	
t _{d(off)}	Turn-off delay time	circuit for resistive load switching times" and Figure 20: "Switching	-	28	-	ns	
t _f	Fall time	time waveform')	-	13	-	ns	

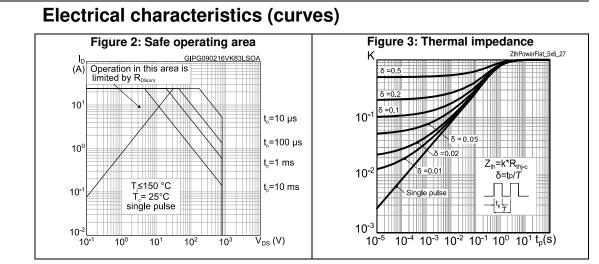
Table 8: Source-drain diode

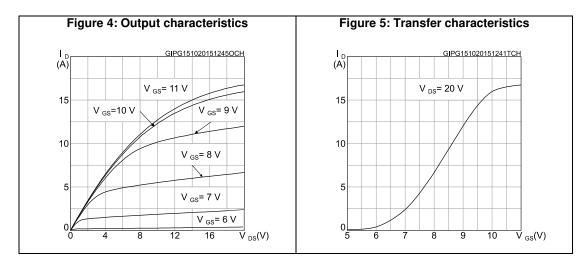
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		6	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		24	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD}=6~A,~V_{GS}=0~V$	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 6 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$ $V_{DD} = 60 \text{ V}$ (see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	350		ns
Qrr	Reverse recovery charge		-	3.9		μC
I _{RRM}	Reverse recovery current		-	22.5		А
t _{rr}	Reverse recovery time	$I_{SD} = 6 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	505		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see <i>Figure 17: "Test circuit</i>	-	5		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	20		А

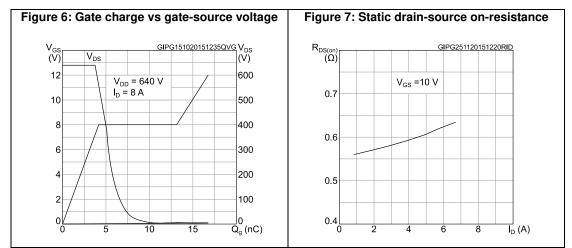
Notes:

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area

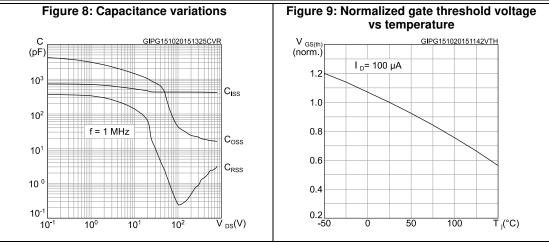
 $^{(2)}$ Pulsed: pulse duration = 300 µs, duty cycle 1.5%

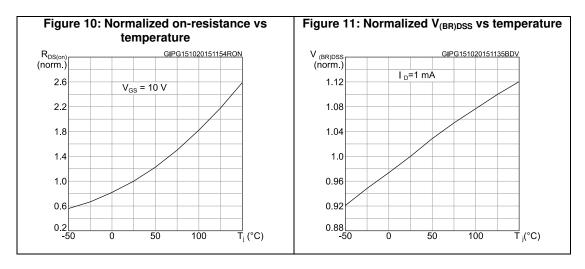

Table 9: Gate-source Zener diode

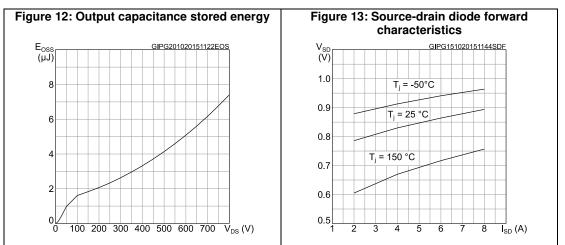

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V (BR)GSO	Gate-source breakdown voltage	I_{GS} = ± 1 mA, I_{D} = 0 A	30	-	-	V


The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

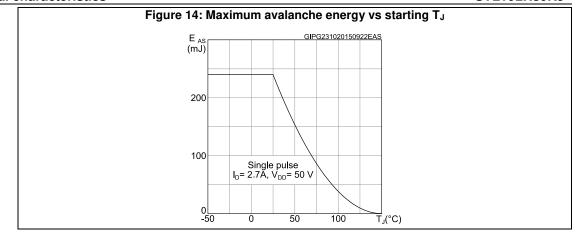
2.2



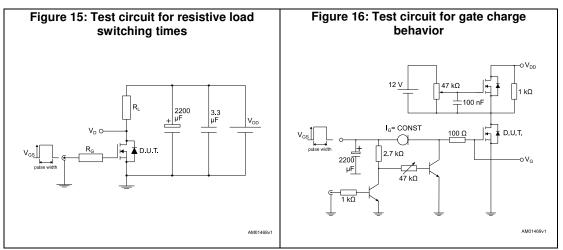


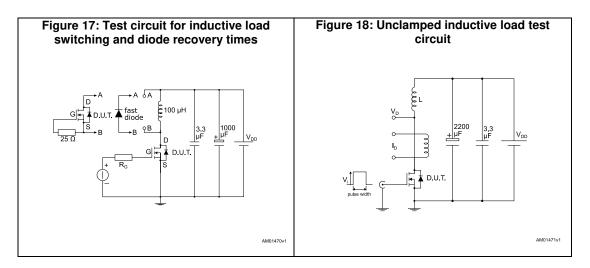

DocID027748 Rev 2

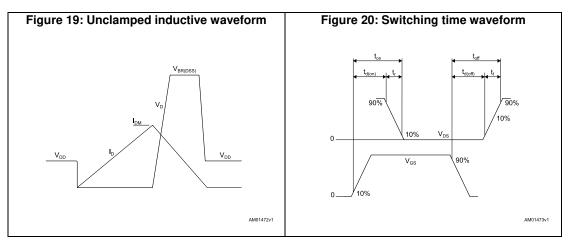
Electrical characteristics



Electrical characteristics

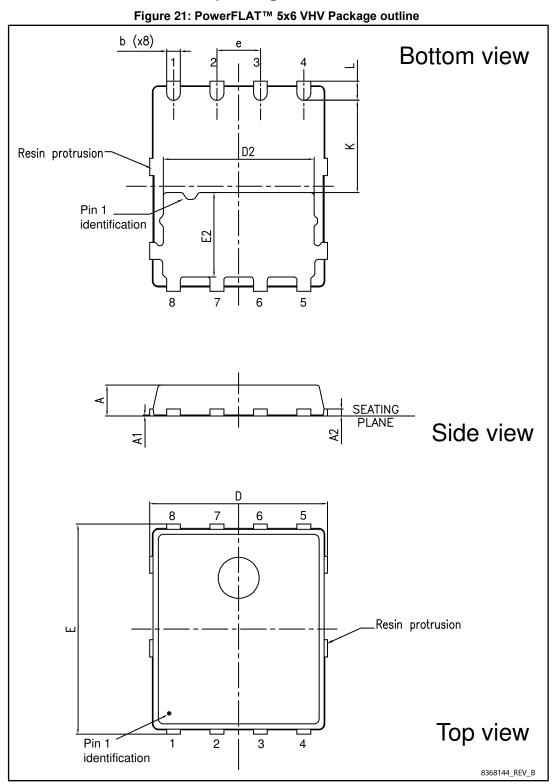

STL10LN80K5




DocID027748 Rev 2

3 Test circuits

4 Package information

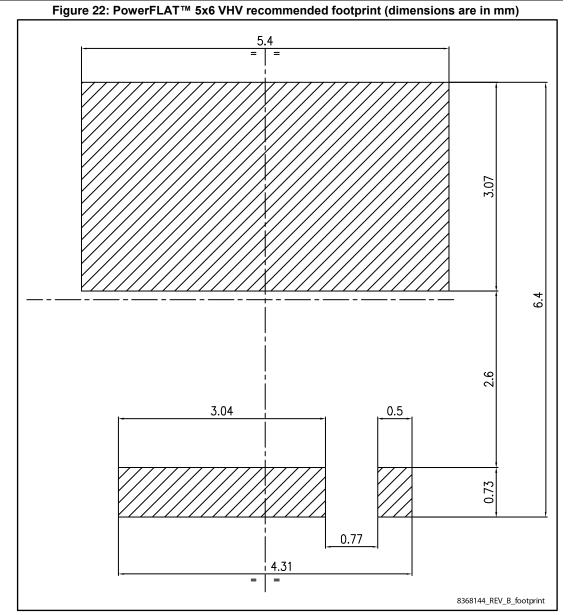

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

57

Package information

DocID027748 Rev 2

Package information


Table 10: PowerFLAT[™] 5x6 VHV package mechanical data

STL10LN80K5

Table 10. Fowert LAT 5x0 VITV package mechanical data				
Dim.	mm			
	Min.	Тур.	Max.	
A	0.80		1.00	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
D	5.00	5.20	5.40	
E	5.95	6.15	6.35	
D2	4.30	4.40	4.50	
E2	2.40	2.50	2.60	
е		1.27		
L	0.50	0.55	0.60	
К	2.60	2.70	2.80	

Package information

4.2 PowerFLAT[™] 5x6 packing information

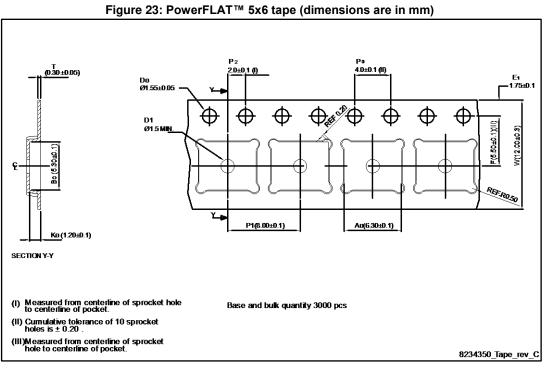
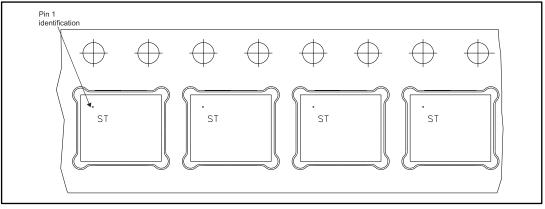
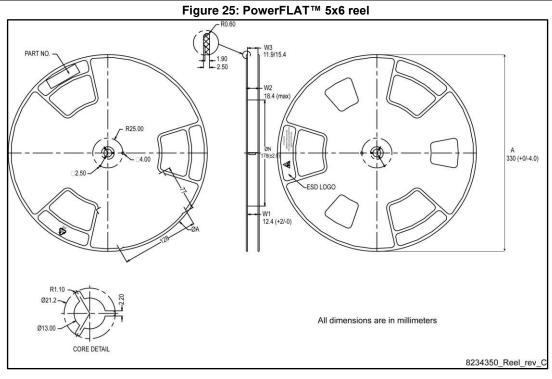




Figure 24: PowerFLAT™ 5x6 package orientation in carrier tape

Package information

Revision history 5

Table 11: Document revision history

Date	Revision	Changes
25-Sep-2015	1	First release.
09-Feb-2016	2	Modified: R _{DS(on)} in cover page Modified: <i>Table 2: "Absolute maximum ratings"</i> , <i>Table 3: "Thermal data"</i> , <i>Table 5: "On/off-state"</i> , <i>Table 6: "Dynamic"</i> and <i>Table 8: "Source-drain diode"</i> Added: <i>Section 3.1: "Electrical characteristics (curves)"</i> Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

