

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STL11N3LLH6

N-channel 30 V, 6 mΩ typ., 11 A STripFET™ H6 Power MOSFET in a PowerFLAT™ 3.3x3.3 package

Datasheet - production data

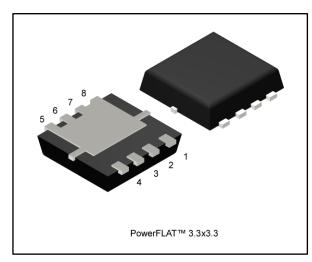
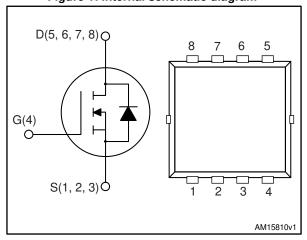



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ΙD
STL11N3LLH6	30 V	7.5 mΩ	11 A

- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFET $^{\text{TM}}$ H6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{\text{DS(on)}}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STL11N3LLH6	11N3L	PowerFLAT TM 3.3x3.3	Tape and reel

Contents STL11N3LLH6

Contents

1	Electrical ratings		
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 3.3x3.3 package information	10
5	Revisio	n history	13

STL11N3LLH6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V_{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} = 25 °C	11	Α
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} = 100 °C	6.9	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	44	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _{pcb} = 25 °C	2.9	W
P _{TOT} (3)	Total dissipation at T _C = 25 °C	45	W
Tj	Operating junction temperature range		°C
T _{stg}	Storage temperature range	-55 to 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.8	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	42.8	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = 5.5$ A, $L = 6$ mH)	90	mJ

 $^{^{(1)}\}text{This}$ value is rated according to $R_{\text{thj-pcb}}.$

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}\}text{The value}$ is rated according to $R_{\text{thj-c}}.$

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified).

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	I_D = 250 μ A, V_{GS} = 0 V	30			V
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			10	μΑ
Igss	Gate-body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1			V
Dane.	Static drain-source	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$		6	7.5	mΩ
R _{DS(on)}	on-resistance	$V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$		8.4	9.5	mΩ

Notes:

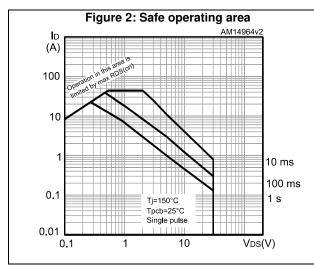
Table 6: Dynamic

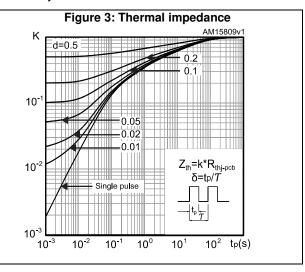
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1	1690	1	pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0 \text{ V}$	1	290	1	pF
C _{rss}	Reverse transfer capacitance	V43= V V	-	176	-	pF
Qg	Total gate charge	$V_{DD} = 15 \text{ V}, I_D = 11 \text{ A},$	-	17	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 4.5 V (see Figure 14: "Test circuit	1	8	1	nC
Q_{gd}	Gate-drain charge	for gate charge behavior")	-	7	-	nC
R _G	Gate input resistance charge	f=1 MHz Gate DC Bias = 0 Test signal level = 20 mV open drain	-	1.7	-	Ω

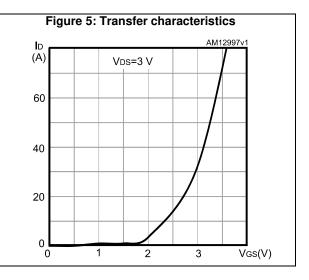
 $^{^{(1)}\}mbox{Defined}$ by design, not subject to production test

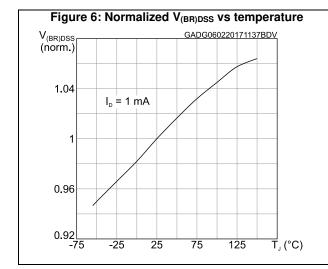
Table 7: Switching times

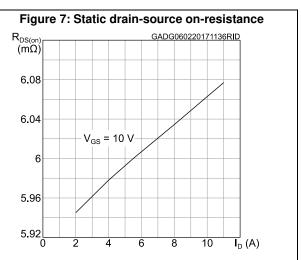
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cyllibol	1 diameter	rest conditions		ıyp.	WIGA.	Oilit
$t_{d(on)}$	Turn-on delay time	V 15.V 1 5.5 A	-	9.5	-	ns
tr	Rise time	$V_{DD} = 15 \text{ V}, I_D = 5.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	1	30	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for	1	37	-	ns
t _f	Fall time	resistive load switching times"	-	12	-	ns

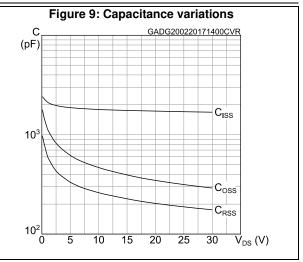

Table 8: Source-drain diode

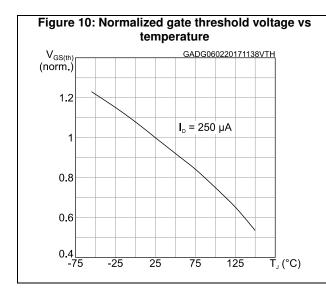

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 11 A, V _{GS} = 0 V	-		1.1	V
t _{rr}	Reverse recovery time	1 11 1 100 1	-	24		ns
Q _{rr}	Reverse recovery charge	$I_D = 11 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$ $V_{DD} = 24 \text{ V}$	-	16.8		nC
I _{RRM}	Reverse recovery current	VDD = 24 V	-	1.4		Α

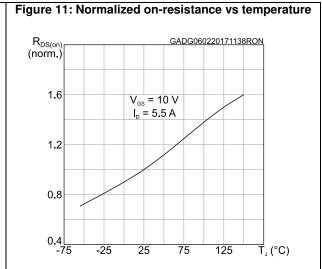

Notes:

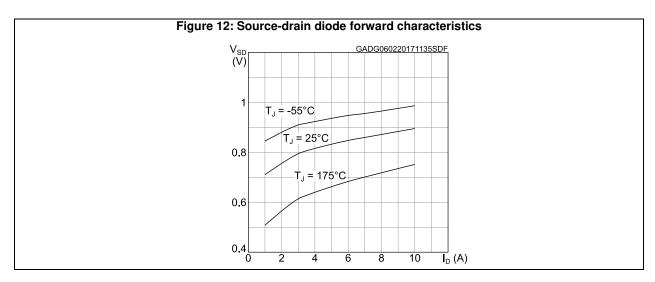

 $^{^{(1)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%


2.1 Electrical characteristics (curves)









Test circuits STL11N3LLH6

3 Test circuits

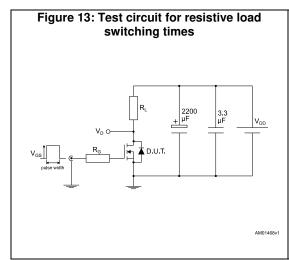
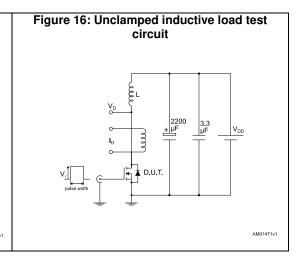
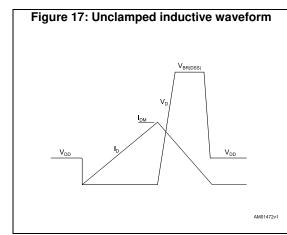


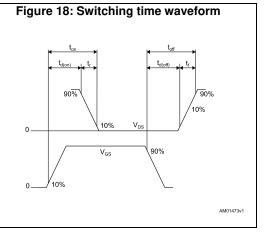
Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.

12 V 47 KΩ VGD


14 V CONST 100 Ω VGD


15 V CONST 100 Ω VGD


16 CONST 100 Ω VGD

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 3.3x3.3 package information

Figure 19: PowerFLAT™ 3.3x3.3 package outline

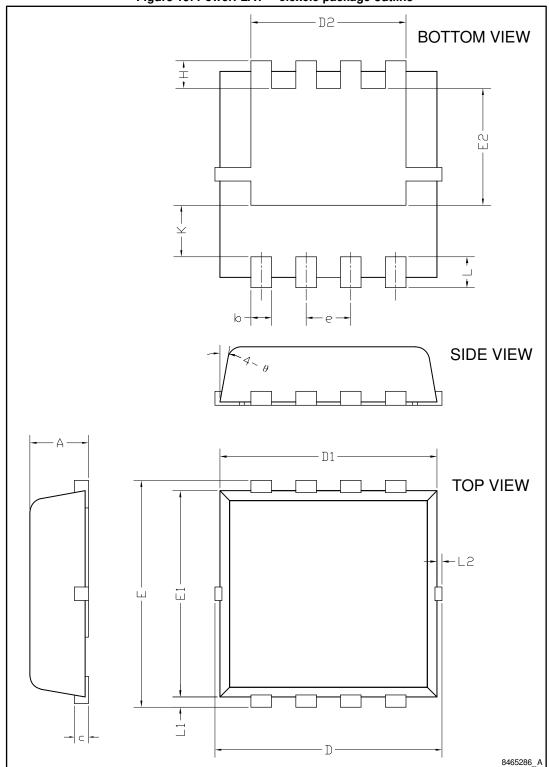
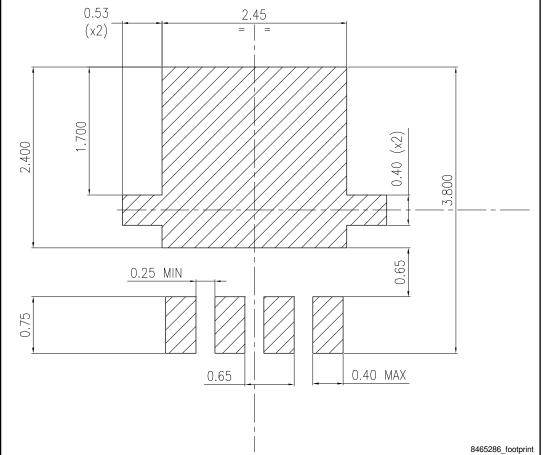



Table 9: PowerFLAT™ 3.3x3.3 package mechanical data

		mm	
Dim.	Min.	Тур.	Max.
Α	0.70	0.80	0.90
b	0.25	0.30	0.39
С	0.14	0.15	0.20
D	3.10	3.30	3.50
D1	3.05	3.15	3.25
D2	2.15	2.25	2.35
е	0.55	0.65	0.75
Е	3.10	3.30	3.50
E1	2.90	3.00	3.10
E2	1.60	1.70	1.80
Н	0.25	0.40	0.55
K	0.65	0.75	0.85
L	030	0.45	0.60
L1	0.05	0.15	0.25
L2			0.15
θ	8°	10°	12°

Figure 20: PowerFLAT™ 3.3x3.3 recommended footprint 2.45

STL11N3LLH6 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
04-Jan-2017	1	First release
11-Jan-2017	2	Updated information on cover page.
20-Feb-2017	3	Updated title, features and description on cover page. Updated Section 1: "Electrical ratings". Updated Section 2: "Electrical characteristics". Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

