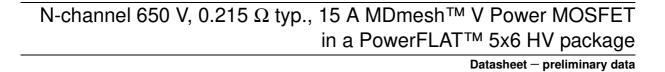
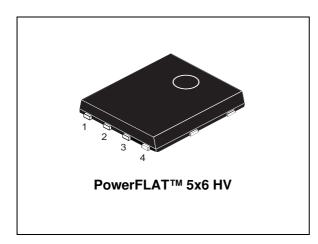
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

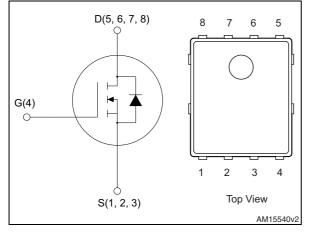
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!




Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


STL18N65M5

life.augmented

Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)max} .	I _D
STL18N65M5	710 V	0.240 Ω	15 A ⁽¹⁾

1. The value is rated according to $\mathsf{R}_{thj\text{-}case}$ and limited by package.

- Outstanding R_{DS(on)}*area
- Extremely large avalanche performance
- Gate charge minimized
- Very low intrinsic capacitance
- 100% avalanche tested

Applications

Switching applications

Description

This device is an N-channel MDmesh[™] V Power MOSFET based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH[™] horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL18N65M5	18N65M5	PowerFLAT™ 5x6 HV	Tape and reel

June 2013

DocID023634 Rev 2

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Contents

1	Electrical ratings 3
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data 10
5	Packaging mechanical data 14
6	Revision history

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	15	А
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	6.5	А
I _{DM} ^{(1),(2)}	Drain current (pulsed)	60	А
P _{TOT} ⁽¹⁾	Total dissipation at $T_{C} = 25 \text{ °C}$	57	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	4	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	210	mJ
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Тj	Max. operating junction temperature	150	°C

Table 2. Absolute maximum ratings

1. The value is rated according to $\mathsf{R}_{thj\text{-}case}$ and limited by package.

2. Pulse width limited by safe operating area.

3. I_{SD} ~\leq~ 15 A, di/dt $~\leq~$ 400 A/µs, V_{Peak} \leq V_{(BR)DSS}, V_{DD} = 400 V.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2.2	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-amb max	59	°C/W

1. When mounted on 1inch² FR-4 board, 2 oz Cu.

2 Electrical characteristics

 $(T_C = 25 \text{ °C unless otherwise specified})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 1 mA	650			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 650 V V _{DS} = 650 V, T _C =125 °C			1 100	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 7.5 A		0.215	0.240	Ω

Table 4. On /off states

Table 5. Dynamic

		Ormshall Dammaster Test and ditions Min Test Mars Unit					
Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit	
C _{iss}	Input capacitance		-	1240	-	pF	
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	32	-	рF	
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	3	-	pF	
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 520 V, V _{GS} = 0	-	99	-	pF	
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$v_{\rm DS} = 0.00320$ v, $v_{\rm GS} = 0.00320$	-	30	-	pF	
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	3	-	Ω	
Qg	Total gate charge	V _{DD} = 520 V, I _D = 7.5 A,	-	31	-	nC	
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	8	-	nC	
Q _{gd}	Gate-drain charge	(see Figure 16)	-	14	-	nC	

1. $C_{oss \, eq}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. $C_{oss eq.}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time		-	36	-	ns	
t _r	Rise time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 9.5 \text{ A},$	-	7	-	ns	
t _{d(off)}	Turn-off delay time	R _G = 4.7 Ω, V _{GS} = 10 V (see <i>Figure 17</i> and <i>20</i>)	-	9	-	ns	
t _f	Fall time		-	11	-	ns	

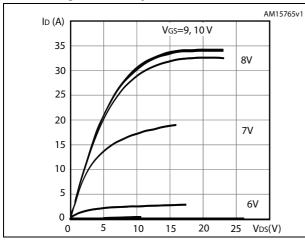
Table 6. Switching times

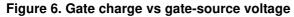
Table	7.	Source	drain	diode
		000100	a	41040

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		15	А
I _{SDM} ⁽¹⁾ , ⁽²⁾	Source-drain current (pulsed)		-		60	А
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 15 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time		-	290		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 15 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 17</i>)	-	3.4		μC
I _{RRM}	Reverse recovery current		-	23.5		А
t _{rr}	Reverse recovery time	I _{SD} = 15 A, di/dt = 100 A/μs	-	352		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	4		μC
I _{RRM}	Reverse recovery current	(see Figure 17)	-	24		А

1. The value is rated according to ${\rm R}_{\rm thj\text{-}case}$ and limited by package.

2. Pulse width limited by safe operating area


3. Pulsed: pulse duration = 300 μ s, duty cycle 1.5%



2.1 Electrical characteristics (curves)

Figure 4. Output characteristics

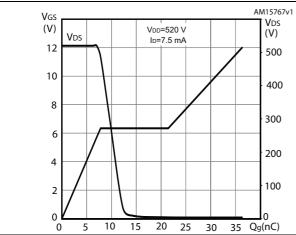
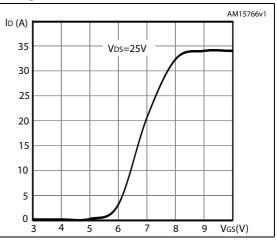
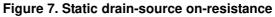
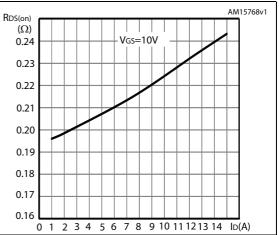





Figure 5. Transfer characteristics

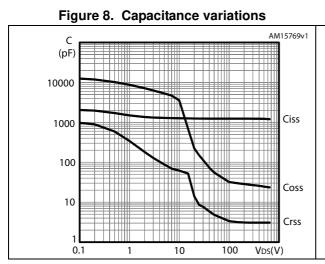


Figure 10. Normalized gate threshold voltage vs. temperature

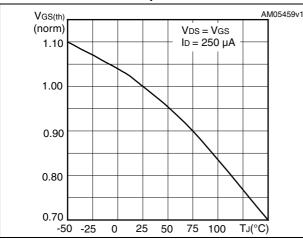
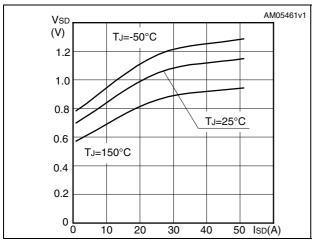



Figure 12. Drain-source diode forward characteristics

Electrical characteristics

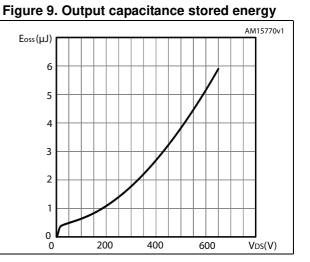


Figure 11. Normalized on-resistance vs. temperature

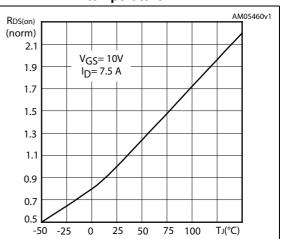
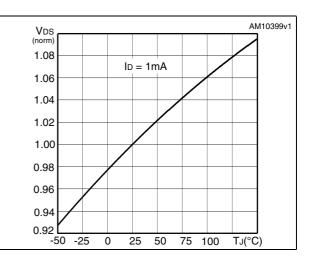



Figure 13. Normalized $\mathsf{B}_{\mathsf{VDSS}}$ vs. temperature

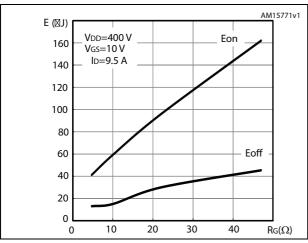


Figure 14. Switching losses vs gate resistance ⁽¹⁾

1. Eon including reverse recovery of a SiC diode

🛱 🛦 D.U.T.

VG

AM01469v1

3 **Test circuits**

Figure 15. Switching times test circuit for resistive load

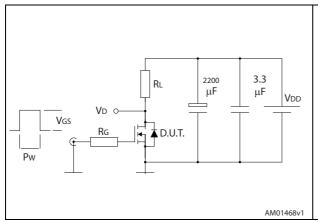


Figure 17. Test circuit for inductive load switching and diode recovery times

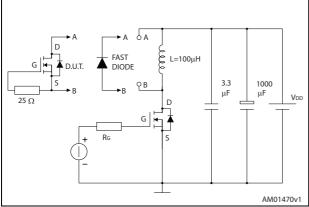
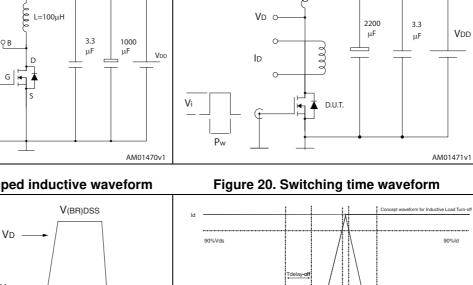
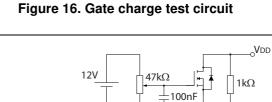




Figure 19. Unclamped inductive waveform

IDM

lр

100Ω

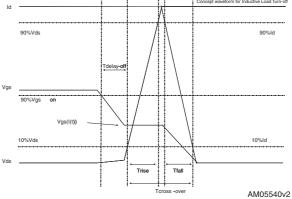
IG=CONST

2.7kΩ

-

47kΩ

Vi=20V=VGMAX


Pw

2200

1kΩ

📥 μF

Figure 18. Unclamped inductive load test circuit

Vdd

DocID023634 Rev 2

Vdd

AM01472v1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 6. PowerFLAT *** 5x6 TV Creepage				
Dim. —		mm		
	Min.	Тур.	Max.	
A	0.80		1.00	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
D	5.00	5.20	5.40	
E	5.95	6.15	6.35	
D2	4.30	4.40	4.50	
E2	3.10	3.20	3.30	
е		1.27		
L	0.50	0.55	0.60	
К	1.90	2.00	2.10	
aaa		0.15		
bbb		0.15		
ccc		0.10		
eee		0.10		

Table 8. PowerFLAT[™] 5x6 HV creepage

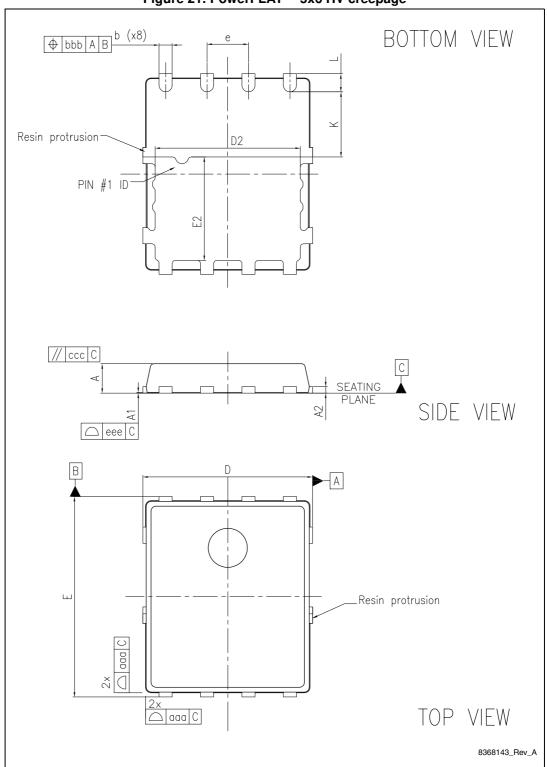
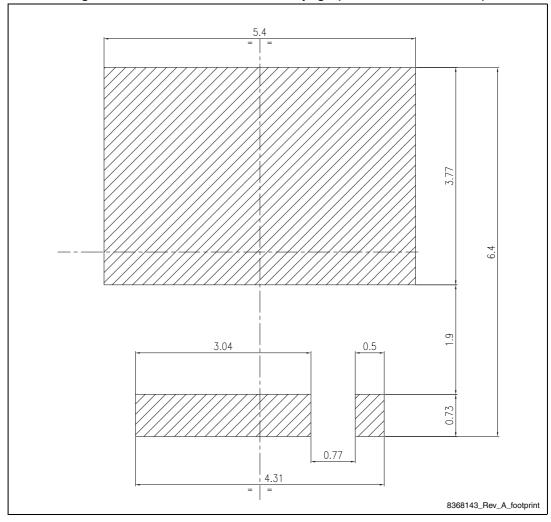
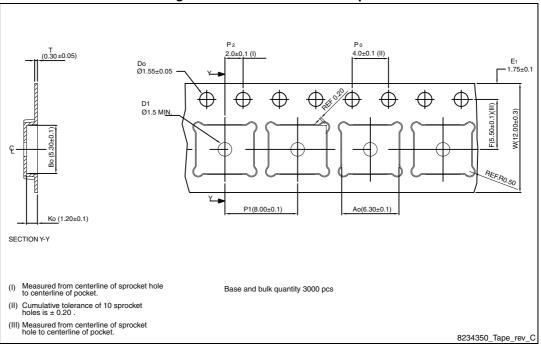
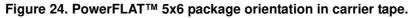
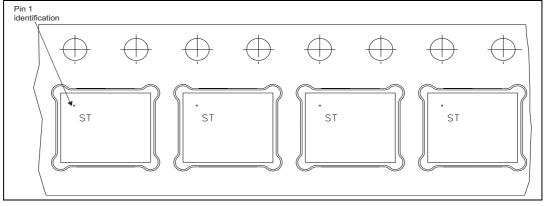


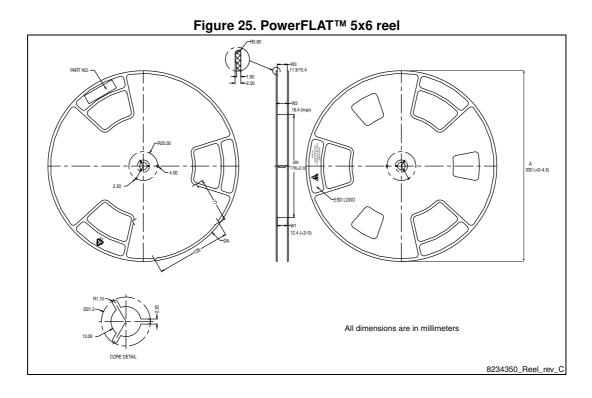
Figure 21. PowerFLAT™ 5x6 HV creepage


Figure 22. PowerFLAT™ 5x6 HV creepage (dimensions are in mm)



5 Packaging mechanical data



6 Revision history

Date	Revision	Changes
24-Apr-2013	1	First release
26-Jun-2013	2	 Modified: <i>Figure 6</i>, <i>15</i>, <i>16</i>, <i>17</i>, <i>18</i> Minor text changes

Table 9. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID023634 Rev 2