

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STL42P6LLF6

P-channel -60 V, 23 mΩ typ., -42 A STripFET™ F6 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

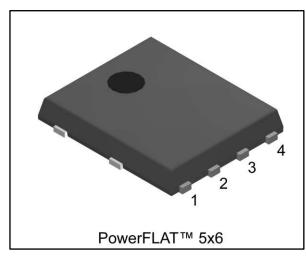
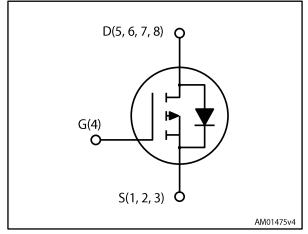



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STL42P6LLF6	-60 V	26 mΩ	-42 A

- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

• Switching applications

Description

This device is a P-channel Power MOSFET developed using the STripFET $^{\text{TM}}$ F6 technology, with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{\text{DS(on)}}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packaging
STL42P6LLF6	42P6LLF6	PowerFLAT™ 5x6	Tape and reel

Contents STL42P6LLF6

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e mechanical data	10
	4.1	PowerFLAT™ 5x6 type R package information	11
	4.2	PowerFLAT™ 5x6 packing information	13
5	Revisio	n history	15

STL42P6LLF6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	-60	٧
V_{GS}	Gate-source voltage	± 20	٧
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	-42	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	-30	Α
I _D ⁽¹⁾⁽³⁾	Drain current (pulsed)	-168	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	-9	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100 °C	-6.6	Α
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	-36	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C 100		W
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25 °C 4.8		W
T _{stg}	Storage temperature range	55 to 175	٥°
Tj	Operating junction temperature range		10

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max		°C/W

Notes:

 $^{^{(1)}\!} The$ value is rated by $R_{thj\text{-case}}.$

 $^{^{(2)}}$ The value is rated by $R_{thj\text{-pcb}}$.

 $[\]ensuremath{^{(3)}}\mbox{Pulse}$ width is limited by safe operating area.

 $^{^{(1)}\!}When$ mounted on FR-4 board of 1 inch², 2 Oz Cu, t < 10 s.

Electrical characteristics STL42P6LLF6

2 Electrical characteristics

(T_C= 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-60			>
	Zaro gata valtaga Drain	$V_{GS} = 0 \text{ V}, V_{DS} = -60 \text{ V}$			-1	μΑ
IDSS	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = -60 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			-10	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	-1		-2.5	V
R _{DS(on)} Static drain-source on- resistance		$V_{GS} = -10 \text{ V}, I_{D} = -4.5 \text{ A}$		23	26	mΩ
		V _{GS} = -4.5 V, I _D = -4.5 A		28	34	11122

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		1	3780	1	pF
Coss	Output capacitance	V _{DS} = -25 V, f = 1 MHz,	-	262	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	1	170	1	рF
Qg	Total gate charge	$V_{DD} = -30 \text{ V}, I_{D} = -9 \text{ A},$	ı	30	1	nC
Qgs	Gate-source charge	V _{GS} = -4.5 V (see <i>Figure 14: "Gate charge</i>	1	10.8	1	nC
Q_{gd}	Gate-drain charge	test circuit")	1	10.5	1	nC
Rg	Gate input resistance	I _D = 0 A, f = 1 MHz	-	1.7	-	Ω

Table 6: Switching times

Table of Carriering Limits						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = -30 \text{ V}, I_{D} = -4.5 \text{ A},$	-	51.4	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = -10 V$	-	39	-	ns
t _{d(off)}	Turn-off-delay time	(see Figure 13: "Switching times test circuit for resistive	-	171	-	ns
t _f	Fall time	load")	-	21	-	ns

⁽¹⁾Defined by design, not subject to production testing

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-	-42		Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-	-168		Α
V _{SD} (2)	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = -9 \text{ A}$	-		-1.1	٧
t _{rr}	Reverse recovery time $I_{SD} = -9 \text{ A}$, $di/dt = 100 \text{ A/}\mu\text{s}$,		1	34		ns
Qrr	Reverse recovery charge	$V_{DD} = -4.8 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 15: "Test circuit for		48		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	-2.8		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

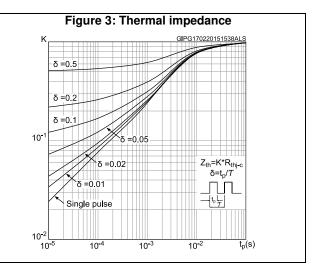
2.1 Electrical characteristics (curves)

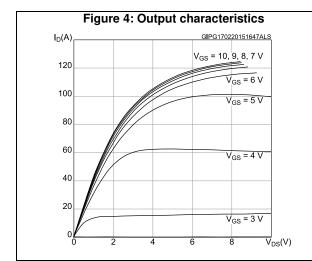
For the P-channel Power MOSFET, current polarity of voltages and current have to be reversed.

Figure 2: Safe operating area

ID(A)

102


101


100 µs

1 ms

10 ms

10 ms

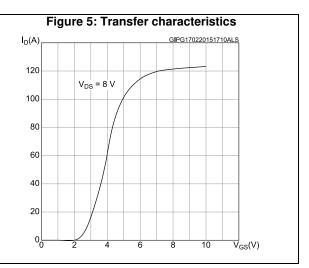


Figure 7: Normalized V_{(BR)DSS} vs temperature
V_{(BR)DSS} (norm.)

1.10

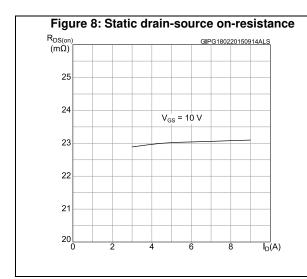
1.00

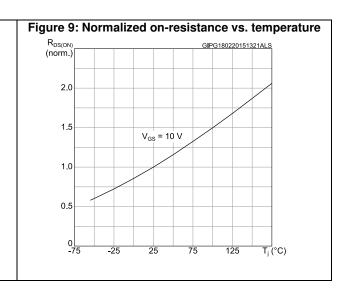
1.00

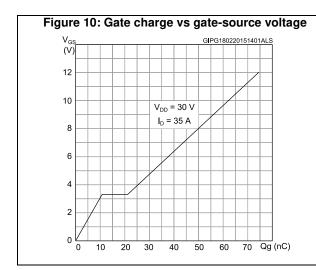
0.95

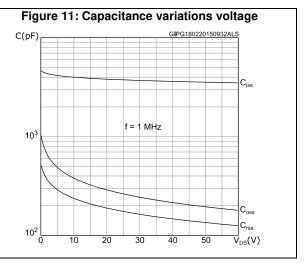
0.90

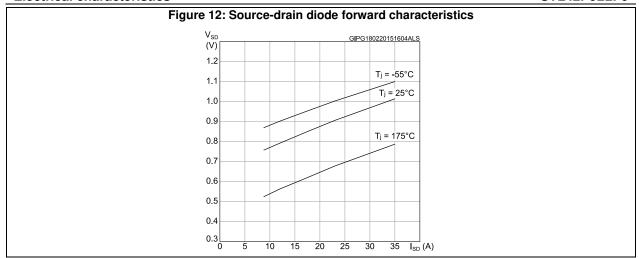
-75

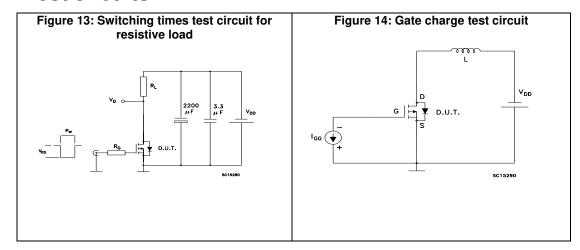

-25

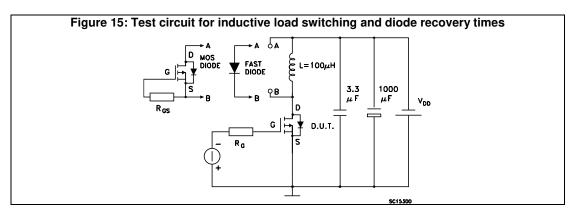

25


75


125


T_J(°C)





STL42P6LLF6 Test circuits

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

10/16 DocID025457 Rev 4

4.1 PowerFLAT™ 5x6 type R package information

Figure 16: PowerFLAT™ 5x6 type R package outline

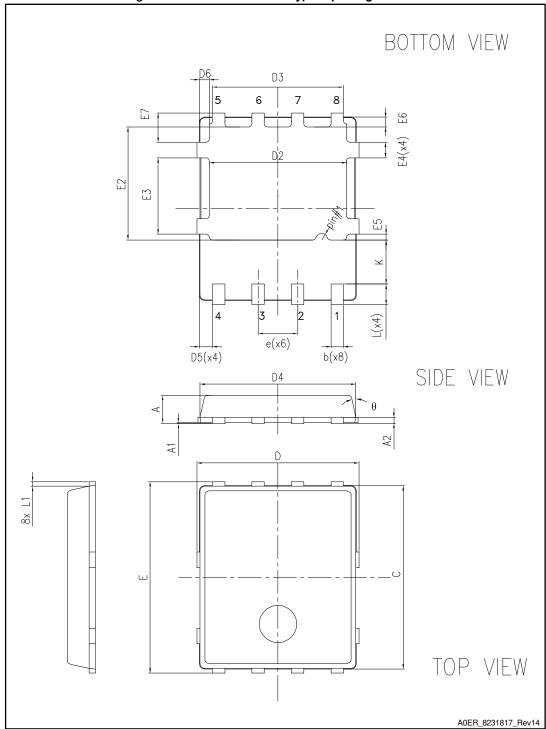
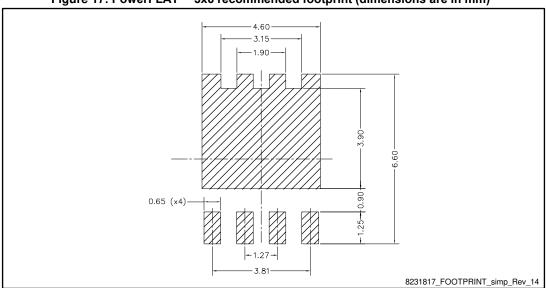



Table 8: PowerFLAT™ 5x6 type R mechanical data

Table 8: PowerFLAT™ 5x6 type R mechanical data				
Dim.		mm		
Dilli.	Min.	Тур.	Max.	
А	0.80		1.00	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
С	5.80	6.00	6.20	
D	5.00	5.20	5.40	
D2	4.15		4.45	
D3	4.05	4.20	4.35	
D4	4.80	5.00	5.20	
D5	0.25	0.40	0.55	
D6	0.15	0.30	0.45	
е		1.27		
Е	5.95	6.15	6.35	
E2	3.50		3.70	
E3	2.35		2.55	
E4	0.40		0.60	
E5	0.08		0.28	
E6	0.20	0.325	0.45	
E7	0.75	0.90	1.05	
K	1.275		1.575	
L	0.60		0.80	
L1	0.05	0.15	0.25	
θ	0°		12°	

Figure 17: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

4.2 PowerFLAT™ 5x6 packing information

Figure 18: PowerFLAT™ 5x6 tape (dimensions are in mm)

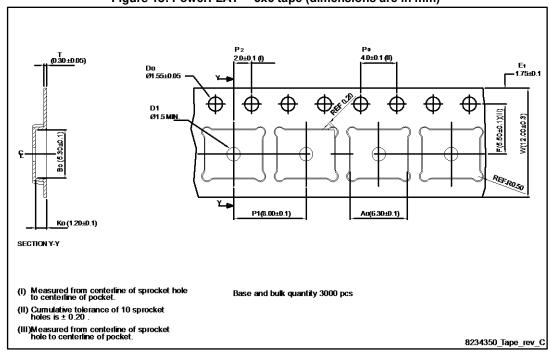
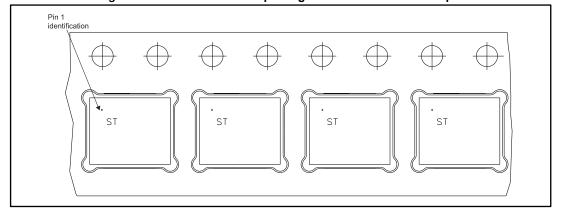



Figure 19: PowerFLAT™ 5x6 package orientation in carrier tape

14/16

8234350_Reel_rev_C

Figure 20: PowerFLAT™ 5x6 reel PART NO. A 330 (+0/-4.0) ESD LOGO All dimensions are in millimeters CORE DETAIL

DocID025457 Rev 4

STL42P6LLF6 Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
28-Oct-2013	1	First release.
25-Aug-2014	2	Modified: Figure 1: "Internal schematic diagram" Updated: Section 10: "Package mechanical data" Minor text changes
24-Feb-2015	3	In title description on cover page, changed 0.02Ω to 0.023Ω In features table on cover page, changed 0.028Ω to 0.026Ω Updated <i>Table 2: Absolute maximum ratings</i> Updated <i>Table 4: Static</i> – renamed table and updated Static drainsource on-resistance values Updated <i>Table 5: Dynamic</i> – test conditions and all typical values Updated <i>Table 6: Switching times</i> – test conditions and all typical values Updated <i>Table 7: Source-drain diode</i> – test conditions and all typical values Updated <i>Table 7: Source-drain diode</i> – test conditions and all typical values Added <i>Section 2.2: Electrical characteristics (curves)</i> Updated <i>Section 4: Package mechanical data</i> Minor text changes
15-Nov-2016	4	Updated title, features table and description on cover page Updated <i>Table 2: "Absolute maximum ratings"</i> Updated <i>Table 4: "Static", Table 5: "Dynamic", Table 6: "Switching times"</i> and <i>Table 7: "Source drain diode"</i> Updated <i>Figure 9: "Normalized on-resistance vs. temperature"</i> Updated <i>Section 4.1: "PowerFLAT™ 5x6 type R package information"</i> Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

