imall

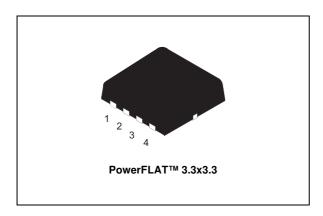
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

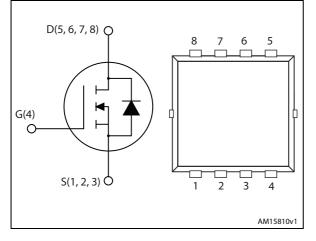
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




STL7N10F7

Datasheet - production data

N-channel 100 V, 0.027 Ω typ., 7 A STripFET[™] VII DeepGATE[™] Power MOSFET in a PowerFLAT[™] 3.3x3.3 package

Figure 1. Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on)} max	۱ _D
STL7N10F7	100 V	0.035 Ω	7 A

- N-channel enhancement mode
- Lower R_{DS(on)} x area vs previous generation
- 100% avalanche rated

Applications

• Switching applications

Description

This device utilizes the 7th generation of design rules of ST's proprietary STripFETTM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest R_{DS(on)} in all packages.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL7N10F7	7N10F	PowerFLAT™ 3.3x3.3	Tape and reel

DocID025972 Rev 2

1/14

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history1	3

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	100	V
V _{GS}	Gate-source voltage	± 20	V
Ι _D ⁽¹⁾	Drain current (continuous) at T _{pcb} =25 °C	7	А
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} =100 °C	5	А
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	28	А
P _{TOT} ⁽¹⁾	Total dissipation at T _{pcb} = 25 °C	2.9	W
P _{TOT} ⁽³⁾	Total dissipation at $T_c = 25 \text{ °C}$	50	W
TJ	Operating junction temperature -55 to 150		°C
T _{stg}	Storage temperature	-00 10 100	°C

Table 2. Absolute maximum ratings

1. The value is rated according $\mathsf{R}_{thj\text{-pcb}}$

2. Pulse width limited by safe operating area.

3. This value is rated according to R_{thj-c} .

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	42.8	°C/W

1. When mounted on FR-4 board of 1inch², 2oz Cu, t < 10sec

2 Electrical characteristics

(T_{CASE}=25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage, V _{GS} = 0	Ι _D = 250 μA	100			v
I_{DSS} Zero gate voltage drain current, (V _{GS} = 0)	V _{DS} = 100 V			1	μA	
	current, (V _{GS} = 0)	V _{DS} = 100 V, T _C = 125 °C			100	μA
I _{GSS}	Gate body leakage current	$V_{GS} = 20 V$, $(V_{DS} = 0)$			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 3.5 A		0.027	0.035	Ω

Table 4. On/off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	920	-	pF
C _{oss}	Output capacitance	V _{DS} =50 V, f=1 MHz,	-	215	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} =0	-	19	-	pF
Qg	Total gate charge	V _{DD} =50 V, I _D = 7 A	-	14	-	nC
Q _{gs}	Gate-source charge	V _{GS} =10 V	-	7	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14)	-	3	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	9.8	-	ns
t _r	Rise time	V _{DD} =50 V, I _D = 3.5 A, R _G =4.7 Ω, V _{GS} = 10 V	-	14	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13)	-	14.8	-	ns
t _f	Fall time		-	4.6	-	ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	А
$I_{SDM}^{(1)}$	Source-drain current (pulsed)		-		28	А
$V_{SD}^{(2)}$	Forward on voltage	I _{SD} = 7 A, V _{GS} =0	-		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 7 A,	-	38		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/μs, − V _{DD} = 80 V, Tj=150 °C	-	29		nC
I _{RRM}	Reverse recovery current	(see Figure 18)	-	1.7		А

Table 7. Source drain diode

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration = $300 \,\mu$ s, duty cycle 1.5 %

ZthPowerFlat_3.3x3.3

tp(s)

2.1 Electrical characteristics (curves)

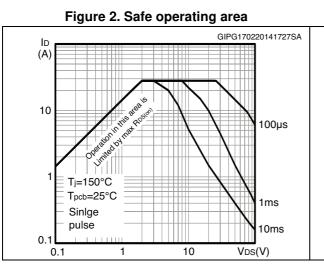
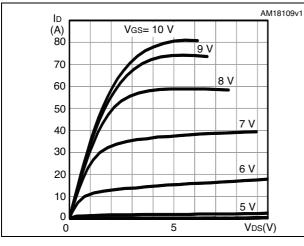



Figure 4. Output characteristics

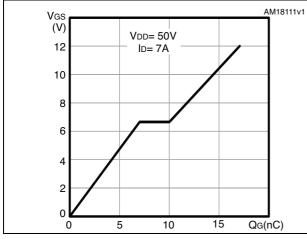


Figure 5. Transfer characteristics

10⁻²

0.01

Single pulse

10⁻³

Figure 3. Thermal impedance

0.2 0.1

0.05

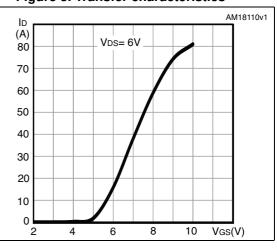
 $\delta = t_p / \tau$

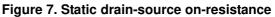
tr

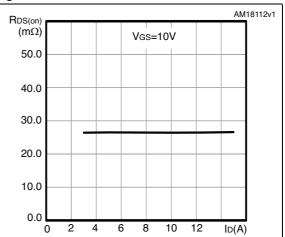
10⁻¹

 $Z_{th} = k R_{thJ-pcb}$

0.02


Κ


10


10⁻²

10⁻⁴

δ=0.5

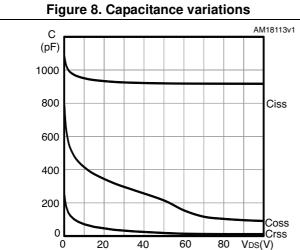


Figure 10. Normalized gate threshold voltage vs temperature

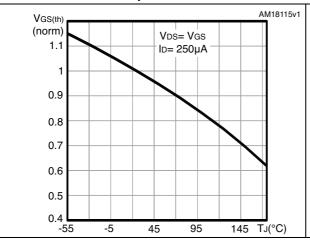


Figure 12. Source-drain diode forward characteristics

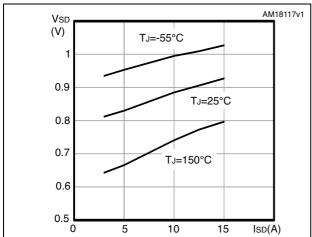
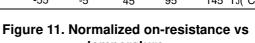




Figure 9. Normalized V_{(BR)DSS} vs temperature AM18114v1 V(BR)DSS (norm) ID= 250µA 1.04 1.02 1 0.98 0.96 L -55 -5 45 95 145 TJ(°C)

Electrical characteristics

3 Test circuits

Figure 13. Switching times test circuit for resistive load

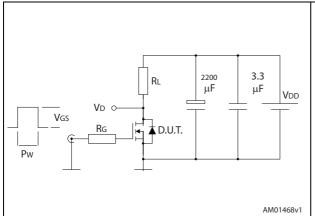
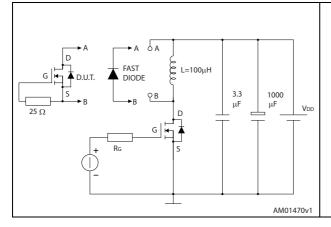
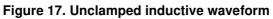
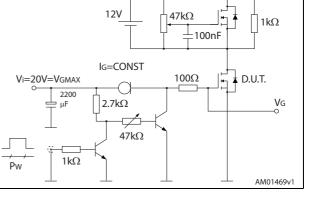




Figure 15. Test circuit for inductive load switching and diode recovery times



VD

IDM

lр

V(BR)DSS

Figure 14. Gate charge test circuit

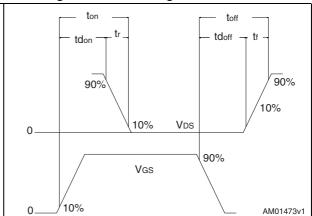


Figure 18. Switching time waveform

Vdd

AM01472v1

Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

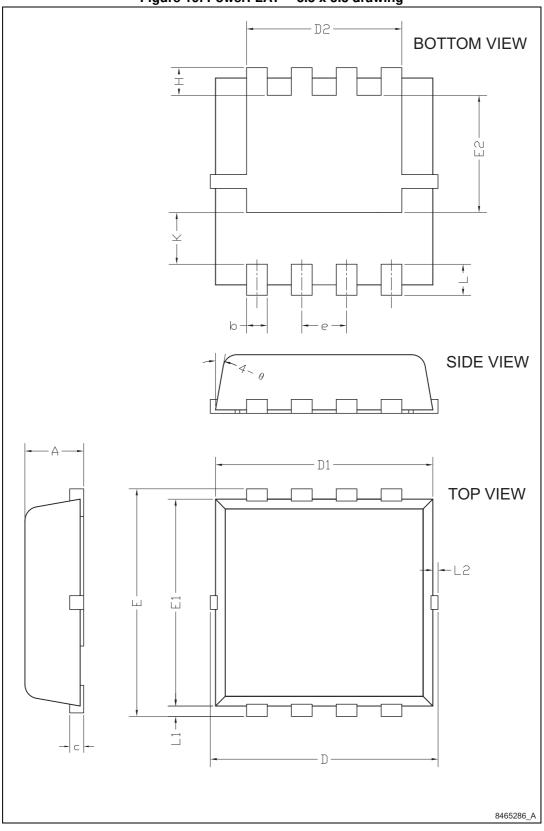


Figure 19. PowerFLAT™ 3.3 x 3.3 drawing

DocID025972 Rev 2

Table 8. PowerFLAT M 3.3 x 3.3 mechanical data			
Dim.		mm	
	Min.	Тур.	Max.
A	0.70	0.80	0.90
b	0.25	0.30	0.39
С	0.14	0.15	0.20
D	3.10	3.30	3.50
D1	3.05	3.15	3.25
D2	2.15	2.25	2.35
е	0.55	0.65	0.75
E	3.10	3.30	3.50
E1	2.90	3.00	3.10
E2	1.60	1.70	1.80
Н	0.25	0.40	0.55
К	0.65	0.75	0.85
L	0.30	0.45	0.60
L1	0.05	0.15	0.25
L2			0.15
ϑ	8°	10°	12°

Table 8. PowerFLAT[™] 3.3 x 3.3 mechanical data

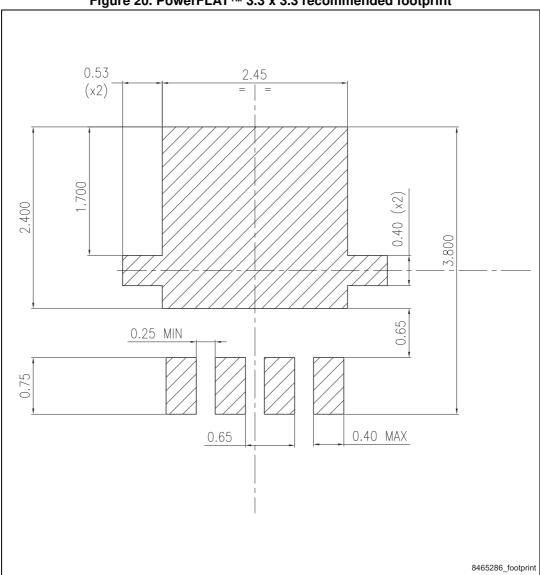


Figure 20. PowerFLAT™ 3.3 x 3.3 recommended footprint

5 Revision history

Date	Revision	Changes
24-Feb-2014	1	First release.
29-Apr-2014	2	Document status promoted from preliminary to production data

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID025972 Rev 2

