

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STLA01

50 mA stand-alone linear LED driver

Features

- Programmable LED current up to 50 mA with ± 5% accuracy
- No external sense resistor
- Constant current source
- Supply voltage range from 3.75 V to 6 V
- Single LED
- 10 µA max supply current in shutdown mode
- DFN6 (2 x 2 mm) package

Description

The STLA01 is a constant current LED driver.

No external sense resistor is required and the DFN6 2 x 2 mm package makes it ideal for portable applications.

The LED current limitation can be programmed using a single resistor connected between the PROG pin and GND. Using the enable pin the device can be put into shutdown mode, reducing the supply current to less than $10 \, \mu A$.

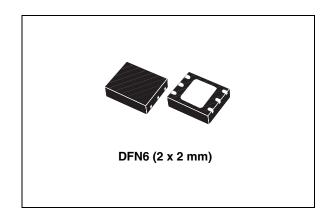
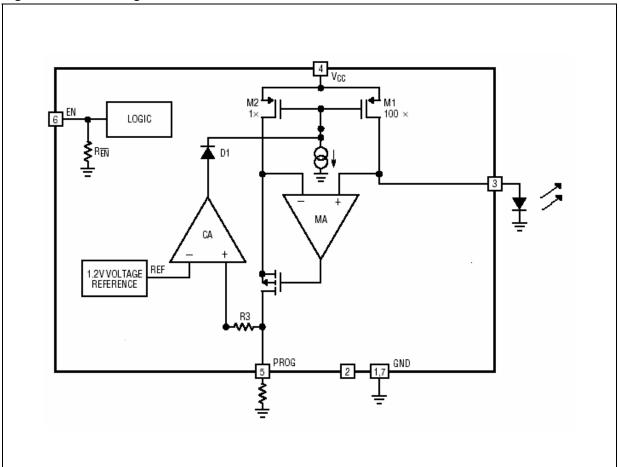


Table 1. Device summary

Part number	Order code	Package
STLA01	STLA01PUR	DFN6 (2x2 mm)

Contents STLA01


Contents

1	Diagram 3
2	Pin configuration4
3	Maximum ratings
4	Application
5	Electrical characteristics
6	Application information 8
	6.1 V _{CC} pin
	6.2 EN pin
	6.3 Programming charge current 8
	6.4 Power dissipation
7	Typical performance characteristics9
8	Package mechanical data
9	Revision history

STLA01 Diagram

1 Diagram

Figure 1. Block diagram

Pin configuration STLA01

2 Pin configuration

Figure 2. Pin connections (top view)

Table 2. Pin description

	•	
Pin n°	Symbol	Name and function
1	GND	Ground
2	NC	Not connected
3	LED	This pin provide an accurate output limited current. In shutdown mode no current can flow to the LED.
4	V _{CC}	Input supply voltage. The input range is from 3.75 V to 6 V.
5	PROG	Current limitation program. (1)
6	EN	Enable pin. Tie to V _{CC} if unused.
Exposed Pad	GND	To be connected to PCB ground plane for optimal electrical and thermal performance.

^{1.} The PROG pin is a high impedance pin, It is possible to connect only the programming resistor.

STLA01 Maximum ratings

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Input supply voltage	From -0.3 to 7	V
V _{LED}	LED pin voltage	From -0.3 to 7	V
V _{PROG}	PROG pin voltage	From -0.3 to 3	V
V _{EN}	EN pin voltage	From -0.3 to 7	V
I _{LED}	LED pin current	80	mA
I _{PROG}	PROG pin current	800	μΑ
	LED short-circuit duration	Continuous	
P _D	Power dissipation	Internally limited	
TJ	Max junction temperature	125	°C
T _{STG}	Storage temperature range	-65 to 125	°C
T _{OP}	Operating junction temperature range	-40 to 85	°C
T _L	Lead temperature (10 sec)	260 (JEDEC 020C)	°C

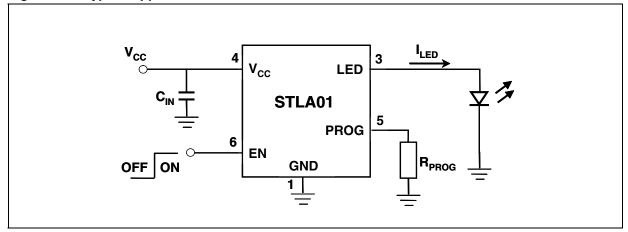
Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	100 ⁽¹⁾	°C/W

^{1.} This value depends on whether the exposed backside of the package is soldered to the PC board. If it is not, the value could be considerably higher.


Table 5. ESD performance

Symbol	Parameter	Test conditions	Value	Unit
ESD E	ESD protection voltage	HBM (EIA/JESD22/A114)	3	kV
ESD		MM (EIA/JESD22/A115)	200	٧

Application STLA01

4 Application

Figure 3. Typical application

5 Electrical characteristics

Table 6. Electrical characteristics ($V_{CC} = V_{EN} = 5 \text{ V}$, $C_{IN} = 1 \mu\text{F}$, $T_J = -40^{\circ}$ to 85°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Supply voltage		3.75		6	V
		$R_{PROG} = 2.4 \text{ k}\Omega$			750	
	Cumply ourrant	$R_{PROG} = 6.2 \text{ k}\Omega^{(1)}$			300	
I _{CC}	Supply current	R_{PROG} =12.4 $k\Omega$ ⁽¹⁾			200	μA
		Shutdown mode V _{EN} = GND		5	10	
I _{LED-MIN}	Minimum LED pin current	Current mode R_{PROG} =65 k Ω V_{LED} =3 V		2		mA
		Current mode R _{PROG} =2.4 k Ω , V _{LED} =3 V	47.5	50	52.5	
ı	LED pin ourrent	Current mode R _{PROG} =6.2 k Ω 19	19	20	21	mA
I _{LED}	LED pin current	Current mode R _{PROG} =12.4 k Ω V _{LED} =3 V ⁽¹⁾	9.5	10	10.5	
		Shutdown mode V_{EN} =GND, T_J = 25 °C		0	±1	μΑ
		$R_{PROG} = 2.4 \text{ k}\Omega$		1.22		
V_{PROG}	PROG pin voltage	$R_{PROG} = 6.2 \text{ k}\Omega^{(1)}$		1.22		V
		$R_{PROG} = 12.4 \text{ k}\Omega^{(1)}$		1.22		
V	EN threshold high	0.3	0.92	1.2	V	
V_{EN}	EN hysteresis	$V_{CC} = 3.75 \text{ V to 6 V}$		120		mV
R _{EN}	EN pin input resistance	V _{EN} = 5 V		2		ΜΩ
R _{ON}	Power FET ON resistance (between V _{CC} and LED)	I _{LED} = 50 mA		8		Ω

^{1.} Guaranteed by design, but not tested in production.

57

6 Application information

The STLA01 is a single LED driver using a constant-current topology. It can deliver up to 80 mA of output current.

If a 1% program resistor is connect from the PROG pin to the GND pin and the EN pin is higher than 0.92 V, the device will supply the LED with the programmed constant current. Putting the EN pin below 0.80 V results in no current flow into the LED diode.

6.1 V_{CC} pin

A positive input supply voltage provides power to the driver. V_{CC} can range from 3.75 V to 6 V and should be bypassed with at least a 1 μ F capacitor. In shutdown mode, the $I_{I-FD} = 0$.

6.2 EN pin

The enable input pin is used to shut down the device when the value of the pin is below 0.80 V. In shutdown condition, the device has less than 10 μ A supply current. The enable pin has an internal pull down ($R_{\overline{EN}}$).

If unused, the pin should be tied to V_{CC} .

6.3 Programming charge current

The LED current is programmed using a single resistor from the PROG pin to ground. The LED current is 100 times the current out of the PROG pin. The program resistor and the led current are calculated using, in first approximation, the following equations:

 $R_{PROG} = 100 \text{ x} (1.22 \text{ V} / I_{LED})$

6.4 Power dissipation

A good thermal PCB layout is very important to maximize the available output current. The thermal path for the heat generated by the IC is from the die to the copper lead frame through the package leads and exposed pad to the PC board copper. The PC board copper acts as the heat sink. The copper pad footprints should be as wide as possible and expand to larger copper areas in order to spread and dissipate the heat to the surrounding ambient. Feed-through vias to inner or backside copper layers are also useful in improving the overall thermal performance of the device. Other heat sources on the board, not related to the device, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum output current.

LED pin current vs temperature

55

54

53

52

48

47

46

45

-50

Typical performance characteristics 7

Figure 4. LED pin current vs temperature

Figure 5. 25 $\rm V_{EN}\!\!=\!\!V_{CC}\!\!=\!\!5$ V, $\rm C_{IN}\!\!=\!\!1$ μF , $\rm V_{LED}\!\!=\!\!3$ V, $\rm R_{PROG}\!\!=\!\!2.4$ kohm 24 23 22 21 20 19 18 17

 $\rm V_{EN}\!\!=\!\!V_{CC}\!\!=\!\!5$ V, $\rm C_{IN}\!\!=\!\!1$ $\mu F,$ $\rm V_{LED}\!\!=\!\!3$ V, $\rm R_{PROG}\!\!=\!\!6.2$ kohm 16 15 0 25 -50 -25 75 100

T [°C]

Figure 6. LED pin current vs temperature

0

-25

25

T [°C]

50

75

100

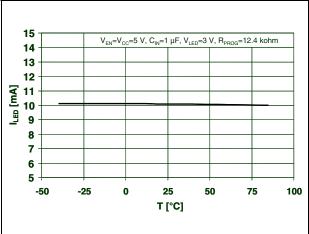


Figure 7. LED pin current vs R_{PROG}

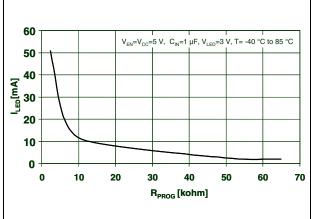


Figure 8. Supply current vs temperature

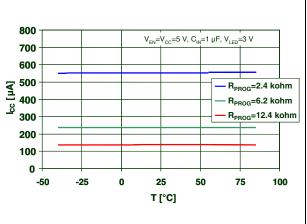


Figure 9. Supply current vs R_{PROG}

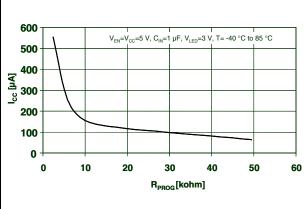


Figure 10. PROG pin voltage vs temperature Figure 11. PROG pin voltage vs R_{PROG}

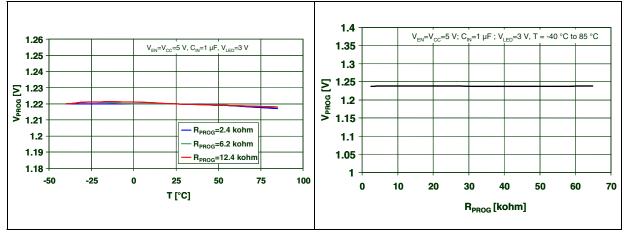


Figure 12. Enable pin voltage vs temperature Figure 13. Enable pin input resistance vs

temperature

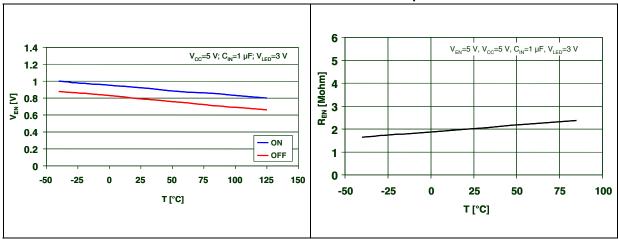
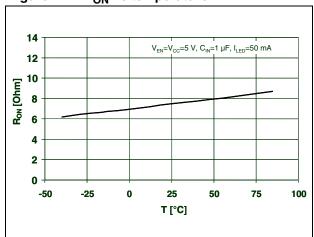
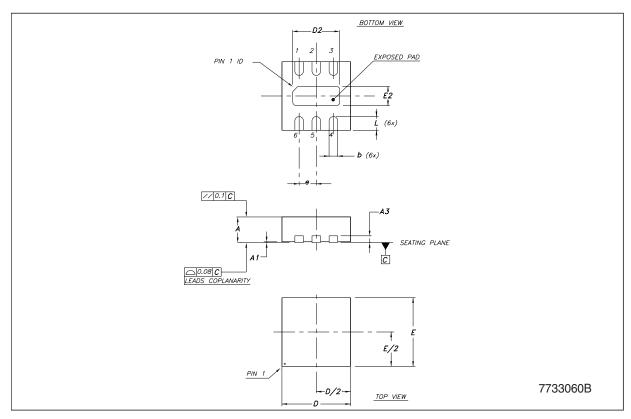
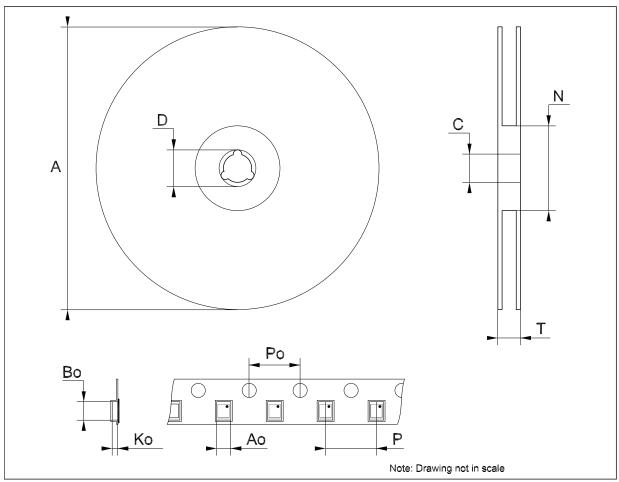



Figure 14. R_{ON} vs temperature



8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.


DFN6 (2x2 mm) mechanical data

Dim.		mm.		inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.70	0.75	0.80	27.6	29.5	31.5
A1	0	0.02	0.05	0.0	0.8	2.0
А3		0.20			7.9	
b	0.20	0.25	0.32	7.9	9.8	12.6
D	1.90	2.00	2.10	74.8	78.7	82.7
D2	1.22	1.37	1.47	48.0	53.9	57.9
E	1.90	2.00	2.10	74.8	78.7	82.7
E2	0.41	0.56	0.66	16.1	22.0	26.0
е		0.50			19.7	
L	0.30	0.40	0.50	11.8	15.7	19.7

Tape & reel QFNxx/DFNxx (2x2 mm) mechanical data

Dim.		mm.		inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.087
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao		2.3			0.091	
Во		2.3			0.091	
Ko		1.0			0.039	
Po		4			0.157	
Р		8			0.315	

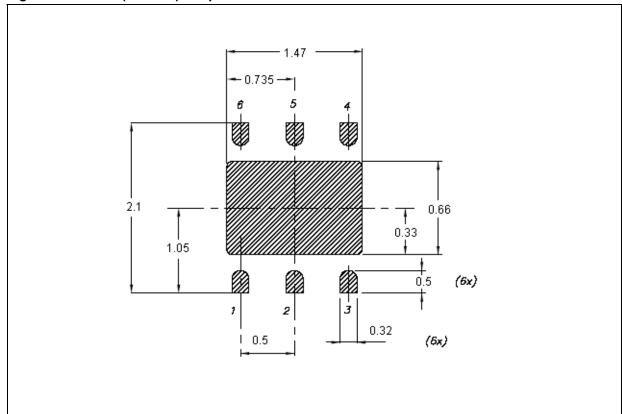


Figure 15. DFN6 (2x2 mm) footprint recommended data

STLA01 Revision history

9 Revision history

Table 7. Document revision history

Date	Revision	Changes
27-Nov-2007	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

