imall

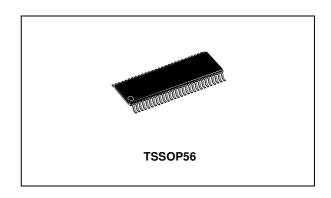
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


+3.3V PROGRAMMABLE LVDS TRANSMITTER 24-BIT FLAT PANEL DISPLAY (FPD) LINK-85MHZ

- 20 TO 85 MHz SHIFT CLOCK SUPPORT
- BEST-IN-CLASS SET & HOLD TIMES ON TxINPUTs
- Tx POWER CONSUMPTION <130 mW (typ) @85MHz GRAYSCALE
- Tx POWER-DOWN MODE <200µW (max)
- SUPPORTS VGA, SVGA, XGA aND SINGLE/ DUAL PIXEL SXGA.
- NARROW BUS REDUCES CABLE SIZE AND COST
- UP TO 2.38 Gbps THROUGHPUT
- UP TO 297.5 Megabytes/sec BANDWIDTH
- 345 mV (typ) SWING LVDS DEVICES FOR LOW EMI
- PLL REQUIRES NO EXTERNAL COMPONENTS
- COMPATIBLE WITH TIA/EIA -644 LVDS STANDARD

DESCRIPTION

The STLVDS385 transmitter converts 28 bits of LVCMOS/LVTTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS

ORDERING CODES

link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of 85 MHz, 24 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 595 Mbps per LVDS data channel. Using a 85 MHz clock, the data throughput is 297.5 Mbytes/sec. The transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. A Rising edge or Falling edge strobe transmitter will inter operate with a Falling edge strobe Receiver without any translation logic.

Туре	Temperature Range	Package	Comments
STLVDS385BTR	-10 to 70°C	TSSOP56 (Tape & Reel)	2000 parts per reel

PIN CONFIGURATION

v _{cc}	I	1	56] TxIN4
TxIN		2	55] TxIN3
TxIN	.	3	54] TxIN2
TxIN		4	53] GND
GND		5	52] TxIN1
TxIN	.	6	51] T×IN0
T×IN		7	50] T×IN27
TxIN	0	8	49] LVDS GND
v _{cc}		9	48] TxOUTO-
TxIN	1	10	47] TxOUTO+
Txin	2	11	46] TxOUT1-
TxiN	3	12	45] Tx0UT1+
GND		13	44] LVDS V _{CC}
TxIN	4	14	43] LVDS GND
TxIN	5	15	42] TxOUT2-
TxIN	6	16	41] TxOUT2+
R_FI		17	40] TxCLKOUT-
TxIN	7	18	39] TxCLKOUT+
TxIN	8	19	38] TxOUT3-
TxIN	9	20	37] TxOUT3+
GND		21	36] LVDS GND
TxIN	:0	22	35] PLL GND
T×IN	:1	23	34] PLL V _{cc}
TxIN	2	24	33] PLL GND
TxIN	3	25	32] PWR DWN
V _{cc}		26	31] TxCLK IN
TxIN	4	27	30] TxIN26
TxIN	5	28	29] GND
		Lc	S13880	

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
1, 9, 26	V _{CC}	Power Supply pins for TTL Inputs
2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 50, 51, 52, 54, 55, 56	T _X IN	TTL level input. This includes: 8 Red, 8 Green, 8 Blue and 4 control lines- FPLINE, FPFRAME, and DRDY (also referred to as HSYNC, VSYNC, Data Enable)
5, 13, 21, 29	GND	Ground pins for TTL Inputs
17	R_FB	Programmable strobe select (See Table 1)
31	TxCLKIN	TTL level clock input. Pin name TxCLK IN
32	PWRDWN	TTL level input. When asserted (low input) TRI-STATES the outputs, ensuring low current at power down
33, 35	PLL GND	Ground pins for PLL
34	PLL V _{CC}	Power Supply pin for PLL
36, 43, 49	LVDS GND	Ground pins for LVDS outputs
37, 41, 45, 47	TxOUT+	Positive LVDS differential data output
38, 42, 46, 48	TxOUT-	Negative LVDS differential data output
39	TxCLK OUT+	Positive LVDS differential clock output
40	TxCLK OUT-	Negative LVDS differential clock output
44	LVDS V _{CC}	Power Supply pin for LVDS outputs
2/14		

TABLE 1 PROGRAMMABLE TRANSMITTER

PIN	CONDITION	STROBE STATUS
R_FB	R_FB = V _{CC}	Rising edge strobe
R_FB	R_FB = GND or NC	Falling edge strobe

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.3 to 4	V
VI	CMOS/TTL Input Voltage	-0.5 to (V _{CC} + 0.3)	V
V _{DO}	LVDS Driver Output Voltage	-0.3 to (V _{CC} + 0.3)	V
I _{OSD}	LVDS Output Short Circuit Duration	Continuous	
ESD	НВМ	7	KV
	EIAJ	500	V
ILATCH	Latch Up Tolerance	± 300	mA
ТJ	Junction Temperature	+150	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage	3.0	3.3	3.6	V
T _A	Operating Free Air Temperature	0		70	°C
ΔV_{CC}	Supply Noise Voltage			100	mV _{PP}
f _{TxCLKIN}	TxCLKIN frequency	20		85	MHz

RECOMMENDED TRANSMITTER INPUT CHARACTERISTICS (V_{CC} = 3.3V, T_J = -10 to 70°C unless otherwise noted. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{CIT}	TxCLK IN Transition Time (Fig. 5)	1.0		6.0	ns
t _{CIP}	TxCLK IN Period (Fig. 6)	11.76	Т	50	ns
t _{CIH}	TxCLK IN High Time (Fig. 6)	0.35T	0.5T	0.65T	ns
t _{CIL}	TxCLK IN Low Time (Fig. 6)	0.35T	0.5T	0.65T	ns
t _{XIT}	TxIN Transition Time	1.5		6.0	ns

ELECTRICAL CHARACTERISTICS

LVCMOS/LVTTL DC SPECIFICATIONS (V_{CC} = 3.3V, T_J = -10 to 70°C unless otherwise noted. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IH}	High Level Input Voltage		2.0		V _{CC}	mV
V _{IL}	Low Level Input Voltage		GND		0.8	mV
V _{CL}	Input Clamp Voltage	I _{CL} = -18mA		-0.79	-1.5	V
l _l	Input Current	V _I =0.4 V, 2.5 or V _{CC}			10	μA
		V _I = GND	-10	0		μA

|--|

LVDS DC SPECIFICATIONS (V_{CC} = 3.3V, T_J = -10 to 70°C unless otherwise noted. Typical values are referred to T_A = 25°C)

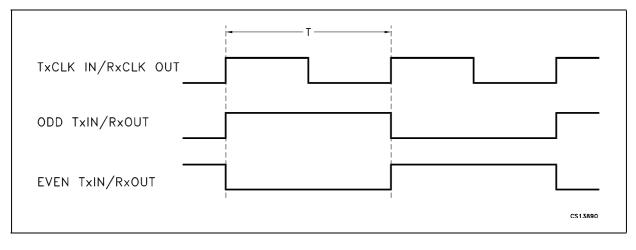
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{OD}	Differential Output Voltage	R _L = 100Ω	250	345	450	mV
ΔV_{OD}	Change in V _{OD} between Complimentary Output States	R _L = 100Ω			35	mV
V _{OS}	Offset Voltage (Note 2)	R _L = 100Ω	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between Complimentary Output States	R _L = 100Ω			35	mV
I _{OS}	Output Short Circuit Current	$V_{O} = 0, \qquad R_{L} = 100\Omega$		-3.5	-5	mA
I _{OZ}	Output Tri-State Current	$POWERDOWN = 0, V_O = 0 \text{ or } V_{CC}$		±1	±10	μΑ

TRANSMITTER SUPPLY CURRENT (V_{CC} = 3.3V, T_J = -10 to 70°C unless otherwise noted. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Condition	ons	Min.	Тур.	Max.	Unit
ICCTW	Transmitter Supply Current	$R_{L} = 100\Omega, C_{L} = 5pF,$	f = 32.5 MHz		31	45	mA
	Worst Case	Worst Case Pattern	f = 40 MHz		32	50	
		(Fig. 1, 3)	f = 65 MHz		37	55	
			f = 85 MHz		42	60	
ICCTG	Transmitter Supply Current	$R_L = 100\Omega, C_L = 5pF,$	f = 32.5 MHz		29	38	mA
	16 Grayscale	16 Grayscale Pattern	f = 40 MHz		30	40	
		(Fig. 1, 3)	f = 65 MHz		35	45	
			f = 85 MHz		39	50	
ICCTZ	Transmitter Supply Current Power Down	Powerdown = Low Driver Outputs in Tri-Stat Down Mode	e under Power		10	55	μA

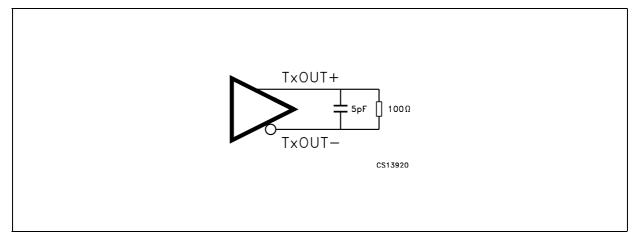
TRANSMITTER SWITCHING CHARACTERISTICS (V_{CC} = 3.3V, T_{J} = -10 to 70°C unless otherwise noted. Typical values are referred to $T_A = 25^{\circ}C$)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{LLHT}	LVDS Low-to-High Transition Time (Fig. 4)			0.75	1.5	ns
t _{LLLT}	LVDS High-to-Low Transition Time (Fig. 4)			0.75	1.5	ns
t _{TPP0}	Transmitter Output Pulse Position for BIT 0 (Fig.11 - Note 3)	f = 40 MHz	-0.25	0	0.25	ns
t _{TPP1}	Transmitter Output Pulse Position for BIT 1		3.32	3.57	3.82	ns
t _{TPP2}	Transmitter Output Pulse Position for BIT 2		6.89	7.14	7.39	ns
t _{TPP3}	Transmitter Output Pulse Position for BIT 3		10.46	10.71	10.96	ns
t _{TPP4}	Transmitter Output Pulse Position for BIT 4		14.04	14.29	14.54	ns
t _{TPP5}	Transmitter Output Pulse Position for BIT 5		17.61	17.86	18.11	ns
t _{TPP6}	Transmitter Output Pulse Position for BIT 6		21.18	21.43	21.68	ns
t _{TPP0}	Transmitter Output Pulse Position for BIT 0 (Fig.11 - Note 3)	f = 65 MHz	-0.20	0	0.20	ns
t _{TPP1}	Transmitter Output Pulse Position for BIT 1		2.00	2.20	2.40	ns
t _{TPP2}	Transmitter Output Pulse Position for BIT 2		4.20	4.40	4.60	ns
t _{TPP3}	Transmitter Output Pulse Position for BIT 3		6.39	6.59	6.79	ns
t _{TPP4}	Transmitter Output Pulse Position for BIT 4		8.59	8.79	8.99	ns
t _{TPP5}	Transmitter Output Pulse Position for BIT 5		10.79	10.99	11.19	ns
t _{TPP6}	Transmitter Output Pulse Position for BIT 6		12.99	13.19	13.99	ns
t _{TPP0}	Transmitter Output Pulse Position for BIT 0 (Fig.11 - Note 3)	f = 85 MHz	-0.20	0	0.20	ns
t _{TPP1}	Transmitter Output Pulse Position for BIT 1		1.48	1.68	1.88	ns
t _{TPP2}	Transmitter Output Pulse Position for BIT 2		3.16	3.36	3.56	ns
t _{TPP3}	Transmitter Output Pulse Position for BIT 3		4.84	5.04	5.24	ns
t _{TPP4}	Transmitter Output Pulse Position for BIT 4		6.52	6.72	6.92	ns
t _{TPP5}	Transmitter Output Pulse Position for BIT 5		8.20	8.40	8.60	ns
t _{TPP6}	Transmitter Output Pulse Position for BIT 6		9.88	10.08	10.28	ns
t _{STC}	TxIN Setup to TxCLK IN (Fig. 6)		2.5			ns
t _{нтс}	TxIN Hold to TxCLK IN (Fig. 6)		0			ns
t _{CCD}	TxCLK IN to TxCLK OUT Delay (Fig. 7)	$T_{A} = 25^{\circ}C,$ $V_{CC} = 3.3V$	3.8		6.3	ns
t _{CCD}	TxCLK IN to TxCLK OUT Delay (Fig. 7)		2.8		7.1	ns
t _{JCC}	Transmitter Jitter Cycle-to-Cycle (Fig. 12 - Note 4)	f = 85 MHz		110	150	ps
		f = 65 MHz		210	230	
		f = 40 MHz		350	370	
t _{PLLS}	Transmitter Phase Lock Loop Set (Fig. 8)				10	ms
t _{PDD}	Transmitter Power Down Delay (Fig. 10)				100	ns


Note 1: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV_{OD}). Note 2: V_{OS} previously referred as V_{CM} . Note 3: The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage, and temperature range. This parameter is functionality tested only on Automatic Test Equipment (ATE). Note 4: The limits are based on bench characterization of the device's jitter response over the power supply voltage range. Output clock jitter is measured with a cycle-to-cycle jitter of \pm 3ns applied to the input clock signal while data inputs are switching (See Figures 15 and 16). A jitter event of 3ns, represents worse case jump in the clock edge from most graphics controller VGA chips currently available. Note 5: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and CMOS/TTL I/O.

Note 6: The 16 grayscale test pattern provides a maximum rogging of algorithm to and one of the index of the

AC TIMING DIAGRAMS


Figure 1 : "Worst Case" Test Pattern (Note 5)

		SIGNAL FREQUENCY
DEVICE PIN NAME		
TxIN0/RxOUT0		f/16
TxIN1/RxOUT1	R1	f/8
TxIN2/RxOUT2		f/4
TxIN3/RxOUT3		f/2
TxIN4/RxOUT4	R4	Steady State, Low
TxIN5/RxOUT5	R7	Steady State, Low
TxIN6/RxOUT6	R5	Steady State, Low
TxIN7/RxOUT7	60	Steady State, Low
TxIN8/RxOUT8	G1	f/16
TxIN9/RxOUT9	G2	f/8
TxIN10/RxOUT10		f/4
TxIN11/RxOUT11		f/2
TxIN12/RxOUT12	63	Steady State, Low
TxIN13/RxOUT13	C4	Steady State, Low
TxIN14/RxOUT14	65	Steady State, Low
TxIN15/RxOUT15	80	Steady State, Low
TxIN16/RxOUT16	86	f/16
TxIN17/RxOUT17	87	f/8
TxIN18/RxOUT18		f/4
TxIN19/RxOUT19		f/2
TxIN20/RxOUT20	B3	 Steady State, Low
TxIN21/RxOUT21	B4	Steady State, Low
TxIN22/RxOUT22	B5	Steady State, Low
TxIN23/RxOUT23	RES	Steady State, Low
TxIN24/RxOUT24	HSYNC	 Steady State, High
TxIN25/RxOUT25	VSYNC	 Steady State, High
TxIN26/RxOUT26	EN	 Steady State, High
TxIN27/RxOUT27	R6	 Steady State, High
		CS13900

Figure 2 : "16 Grayscale" Test Patter (Notes 6, 7, 8)

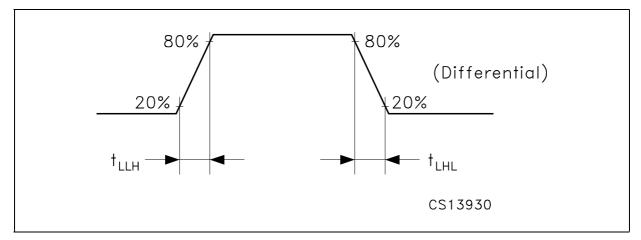
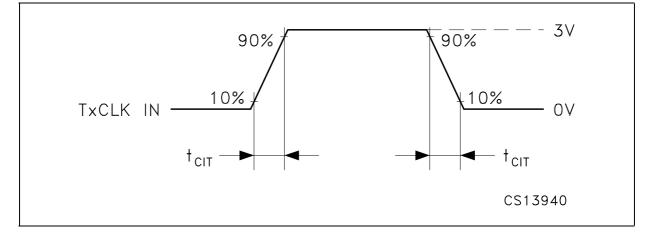



Figure 5 : (Transmitter) Input Clock Transition Time

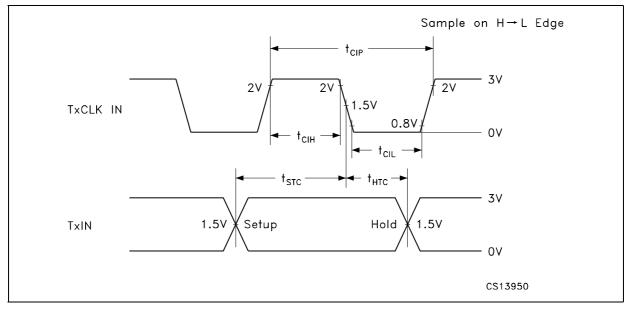
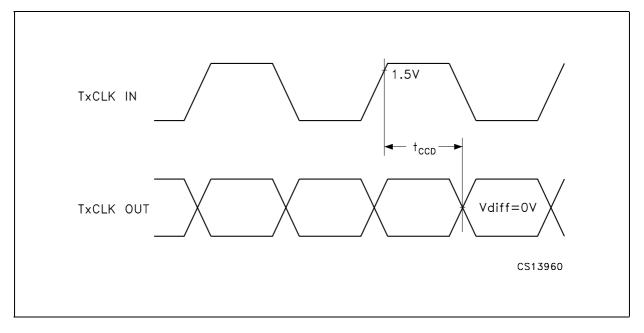



Figure 6 : (Transmitter) Setup/Hold and High/Low Times (Falling Edge Strobe)

Figure 7 : (Transmitter) Clock In to Clock Out Delay

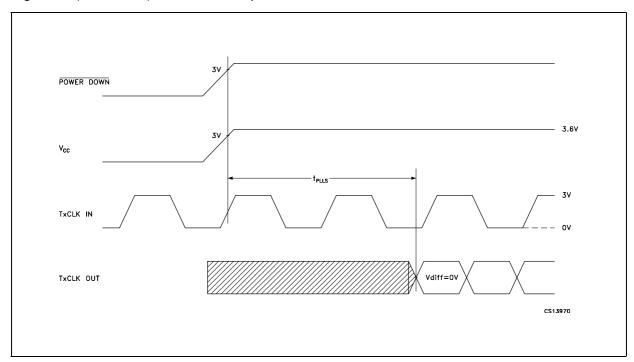
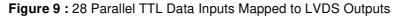



Figure 8 : (Transmitter) Phase Lock Loop Set Time

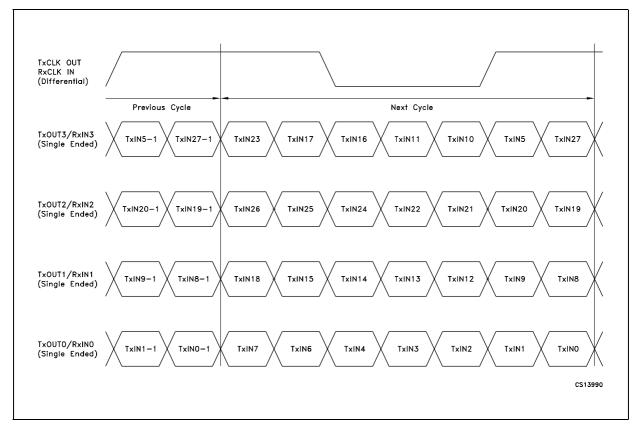
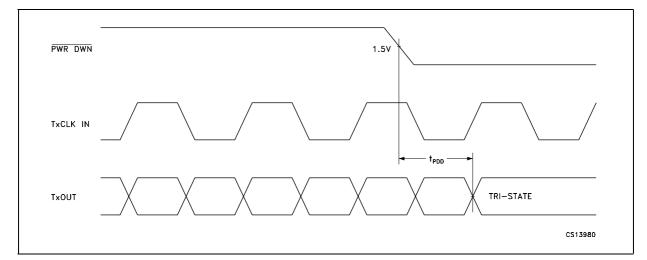
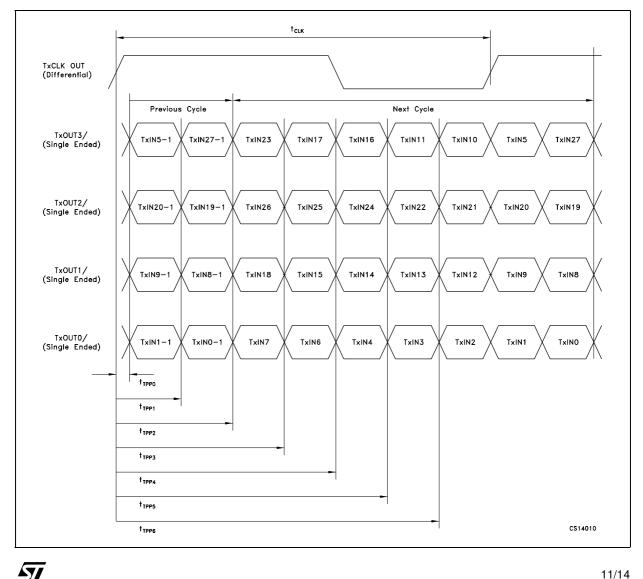
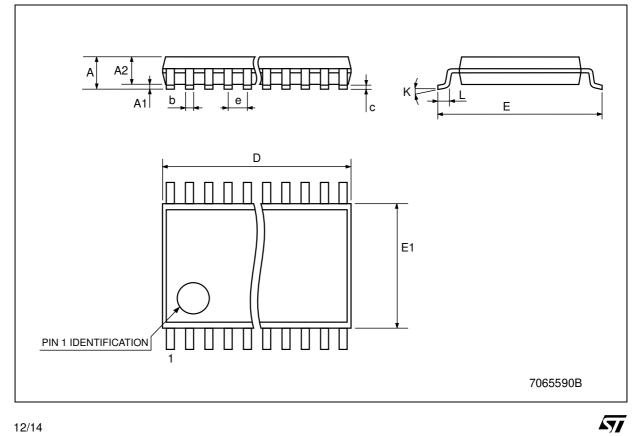


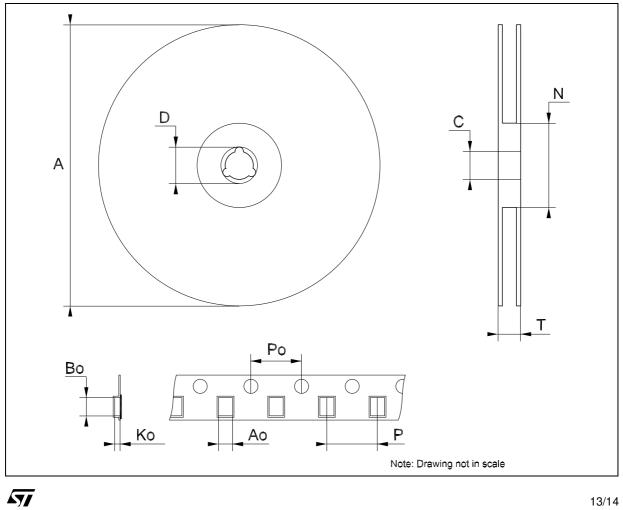
Figure 10 : Transmitter Power Down Delay


Figure 11 : Transmitter LVDS Output Pulse Position Measurement

11/14

	TSSOP56 MECHANICAL DATA								
DIM.	mm.			inch					
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А			1.2			0.047			
A1	0.05		0.15	0.002		0.006			
A2		0.9			0.035				
b	0.17		0.27	0.0067		0.011			
С	0.09		0.20	0.0035		0.0079			
D	13.9		14.1	0.547		0.555			
E	7.95		8.25	0.313		0.325			
E1	6.0		6.2	0.236		0.244			
е		0.5 BSC			0.0197 BSC				
К	0°		8°	0°		8°			
L	0.45		0.75	0.020		0.030			


1

Г

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			30.4			1.197
Ao	8.7		8.9	0.342		0.350
Во	17.2		17.4	0.677		0.685
Ko	1.4		1.6	0.055		0.063
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP56 MECHANICAL DATA

13/14

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com