
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

December 2016 DocID026352 Rev 8 1/29

1

UM1766
User manual

Getting started with STM32CubeF3 for STM32F3 Series

Introduction

STMCube™ initiative is an STMicroelectronics original initiative to ease developers life by

reducing development efforts, time and cost. STM32Cube covers STM32 portfolio.

STM32Cube Version 1.x includes:

• The STM32CubeMX, a graphical software configuration tool that allows to generate C

initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per series (such as

STM32CubeF3 for STM32F3 Series)

– The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring

maximized portability across STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, STMTouch, FatFS

and Graphics

– All embedded software utilities coming with a full set of examples

The STMCube™ package is a free solution that can be downloaded from ST website at

http://www.st.com/stm32cube.

This user manual describes how to get started with the STM32CubeF3 firmware package.

Section 1 describes the main features of STM32CubeF3 firmware, part of the STM32Cube

initiative.

Section 2 and Section 3 provide an overview of the STM32CubeF3 architecture and

firmware package structure.

www.st.com

DocID026352 Rev 8 2/29

UM1766 Contents

3

Contents

1 STM32CubeF3 main features . 6

2 STM32CubeF3 architecture overview . 8

2.1 Level 0 . 8

2.1.1 Board Support Package (BSP) . 9

2.1.2 Hardware Abstraction Layer (HAL) and Low Layer (LL) 9

2.1.3 Basic peripheral usage examples . 10

2.2 Level 1 . 10

2.2.1 Middleware components . 10

2.2.2 Examples based on the middleware components 11

2.3 Level 2 .11

3 STM32CubeF3 firmware package overview . 12

3.1 Supported STM32F3 devices and hardware . 12

3.2 Firmware package overview . 14

4 Getting started with STM32CubeF3 . 18

4.1 Running the first example . 18

4.2 Developing your own application . 19

4.2.1 HAL application . 19

4.2.2 LL application . 22

4.3 Using STM32CubeMX to generate the initialization C code 23

4.4 Getting STM32CubeF3 release updates . 23

5 FAQs . 24

5.1 What is the license scheme for the STM32CubeF3 firmware? 24

5.2 Which boards are supported by the STM32CubeF3 firmware package? . 24

5.3 Are any examples provided with the ready-to-use toolset projects? 24

5.4 Is there any link with Standard Peripheral Libraries? 24

5.5 Does the HAL take benefit from interrupts or DMA?

How can this be controlled? . 25

5.6 How are the product/peripheral specific features managed? 25

5.7 How can STM32CubeMX generate code based on embedded software? 25

Contents UM1766

3/29 DocID026352 Rev 8

5.8 How can the user get regular updates on the latest

STM32CubeF3 firmware releases? . 25

5.9 When to use HAL versus LL drivers? . 25

5.10 How can the user include LL drivers in his/her environment?

Is there any LL configuration file as for HAL? . 25

5.11 Can HAL and LL drivers be used together?

If yes, what are the constraints? . 26

5.12 Are there any LL APIs not available with HAL? . 26

5.13 Why are SysTick interrupts not enabled on LL drivers? 26

5.14 How are LL initialization APIs enabled? . 26

6 Revision history . 27

DocID026352 Rev 8 4/29

UM1766 List of tables

4

List of tables

Table 1. Macros for STM32F3 Series . 12

Table 2. Boards for STM32F3 Series . 13

Table 3. Number of examples available for each board . 17

Table 4. Document revision history . 27

List of figures UM1766

5/29 DocID026352 Rev 8

List of figures

Figure 1. STM32Cube firmware components . 7

Figure 2. STM32CubeF3 firmware architecture . 8

Figure 3. STM32CubeF3 firmware package structure . 14

Figure 4. STM32CubeF3 example overview . 15

DocID026352 Rev 8 6/29

UM1766 STM32CubeF3 main features

28

1 STM32CubeF3 main features

STM32CubeF3 gathers together, in a single package, all the generic embedded software

components required to develop an application on STM32F3 microcontrollers. In line with

the STM32Cube initiative, this set of components is highly portable, not only within

STM32F3 Series but also to other STM32 Series.

STM32CubeF3 is fully compatible with STM32CubeMX code generator that allows the user

to generate initialization code. The package includes a low level hardware abstraction layer

(HAL) that covers the microcontroller hardware, together with an extensive set of examples

running on STMicroelectronics boards. The HAL is available in open-source BSD license for

user convenience.

STM32CubeF3 package also contains a set of middleware components with the

corresponding examples. They come in very permissive license terms:

• Full USB Device stack supporting many classes: Audio, HID, MSC, CDC and DFU,

• CMSIS-RTOS implementation with FreeRTOS open source solution,

• FAT File system based on open source FatFS solution,

• STMTouch touch sensing library solution,

• STemWin, a professional graphical stack solution available in binary format and based

on ST partner solution SEGGER emWin.

Several applications and demonstrations implementing all these middleware components

are also provided in the STM32CubeF3 package.

STM32CubeF3 main features UM1766

7/29 DocID026352 Rev 8

Figure 1. STM32Cube firmware components

DocID026352 Rev 8 8/29

UM1766 STM32CubeF3 architecture overview

28

2 STM32CubeF3 architecture overview

The STM32Cube firmware solution is built around three independent levels that can easily

interact with each other, as described in the Figure 2 below:

Figure 2. STM32CubeF3 firmware architecture

2.1 Level 0

This level is divided into three sub-layers:

• Board Support Package (BSP)

• Hardware Abstraction Layer (HAL)

– HAL peripheral drivers

– Low Layer drivers

• Basic peripheral usage examples

STM32CubeF3 architecture overview UM1766

9/29 DocID026352 Rev 8

2.1.1 Board Support Package (BSP)

This layer offers a set of APIs relative to the hardware components in the hardware boards

(such as LCD, Audio, microSD, MEMS drivers). It is composed of two parts:

• Component

This is the driver relative to the external device on the board and not related to the

STM32. The component driver provides specific APIs to the BSP driver external

components and can be portable on any other board.

• BSP driver

It permits to link the component driver to a specific board and provides a set of friendly

used APIs. The APIs naming rule is BSP_FUNCT_Action().

Example: BSP_LED_Init(),BSP_LED_On()

The BSP is based on a modular architecture allowing an easy porting on any hardware

by implementing the low level routines.

2.1.2 Hardware Abstraction Layer (HAL) and Low Layer (LL)

The STM32CubeF3 HAL and LL are complementary and cover a wide range of applications

requirements.

• The HAL drivers offer high-level function-oriented highly-portable APIs. They hide the

MCU and peripheral complexity to end user.

The HAL drivers provide generic multi-instance feature-oriented APIs which simplify

user application implementation by providing ready to use process. As example, for the

communication peripherals (I2S, UART…), it provides APIs allowing initializing and

configuring the peripheral, managing data transfer based on polling, interrupt or DMA

process, and handling communication errors that may raise during communication.

The HAL driver APIs are split in two categories:

– Generic APIs providing common and generic functions to all the STM32 Series

– Extension APIs, which provide specific and customized functions for a specific

family or a specific part number.

• The Low Layer APIs provide low-level APIs at register level, with better optimization but

less portability. They require a deep knowledge of MCU and peripheral specifications.

The LL drivers are designed to offer a fast light-weight expert-oriented layer that is

closer to the hardware than the HAL. Contrary to the HAL, LL APIs are not provided for

peripherals where optimized access is not a key feature, or for those requiring heavy

software configuration and/or complex upper-level stack (such as USB).

The LL drivers feature:

– A set of functions to initialize peripheral main features according to the parameters

specified in data structures

– A set of functions used to fill initialization data structures with the reset values

corresponding to each field

– Function for peripheral de-initialization (peripheral registers restored to their

default values)

– A set of in-line functions for direct and atomic register access

– Full independence from HAL and capability to be used in standalone mode

(without HAL drivers)

– Full coverage of the supported peripheral features.

DocID026352 Rev 8 10/29

UM1766 STM32CubeF3 architecture overview

28

2.1.3 Basic peripheral usage examples

This layer encloses the examples built over the STM32 peripheral and that use only the HAL

and BSP resources.

2.2 Level 1

This level is divided into two sub-layers:

• Middleware components

• Examples based on the middleware components

2.2.1 Middleware components

The middleware is a set of Libraries covering USB Device library, STMTouch touch sensing

library, graphical STemWin library, FreeRTOS and FatFS. Horizontal interactions between

the components of this layer is done directly by calling the feature APIs while the vertical

interaction with the low level drivers is done through specific callbacks and static macros

implemented in the library system call interface. As example, the FatFs implements the disk

I/O driver to access microSD drive or the USB Mass Storage Class.

The main features of each middleware component are as follows:

• USB Device Library

– Several USB classes supported (Mass-Storage, HID, CDC, DFU, AUDIO, MTP)

– Supports multi packet transfer features: allows sending big amounts of data

without splitting them into max packet size transfers.

– Uses configuration files to change the core and the library configuration without

changing the library code (Read Only).

– RTOS and Standalone operation,

– The link with low-level driver is done through an abstraction layer using the

configuration file to avoid any dependency between the Library and the low-level

drivers.

• STemWin Graphical stack

– Professional grade solution for GUI development based on SEGGER emWin

solution.

– Optimized display drivers.

– Software tools for code generation and bitmap editing (STemWin Builder…).

• FreeRTOS

– Open source standard,

– CMSIS compatibility layer,

– Tickless operation during low-power mode,

– Integration with all STM32Cube middleware modules.

• FAT File system

– FATFS FAT open source library,

– Long file name support,

– Dynamic multi-drive support,

– RTOS and standalone operation,

STM32CubeF3 architecture overview UM1766

11/29 DocID026352 Rev 8

– Examples with microSD.

• STM32 Touch Sensing Library

– Robust STMTouch capacitive touch sensing solution supporting proximity,

touchkey, linear and rotary touch sensor using a proven surface charge transfer

acquisition principle.

2.2.2 Examples based on the middleware components

Each middleware component comes with one or more examples (also called Applications)

showing how to use it. Integration examples that use several middleware components are

also provided.

2.3 Level 2

This level is composed of a single layer, which is a global real-time and graphical

demonstration based on the middleware service layer, the low level abstraction layer and

the basic peripheral usage applications for board based functionalities.

DocID026352 Rev 8 12/29

UM1766 STM32CubeF3 firmware package overview

28

3 STM32CubeF3 firmware package overview

3.1 Supported STM32F3 devices and hardware

STM32Cube offers highly portable Hardware Abstraction Layer (HAL) built around a generic

architecture and allows the build-upon layers, like the middleware layer, to implement its

functions without knowing, in-depth, the MCU used. This improves the library code

re-usability and guarantees an easy portability on other devices.

The layered architecture of the STM32CubeF3 offers the full support of the whole STM32F3

Series. The user only needs define the right macro in stm32f3xx.h.

Table 1 below provides the macro to define depending on the used STM32F3 device (this

macro must also be defined in the compiler preprocessor).

Table 1. Macros for STM32F3 Series

Macro defined in

stm32f3xx.h
STM32F3 devices

STM32F301x8
STM32F301K6, STM32F301C6, STM32F301R6,

STM32F301K8, STM32F301C8 and STM32F301R8

STM32F302x8
STM32F302K6, STM32F302C6, STM32F302R6,

STM32F302K8, STM32F302C8 and STM32F302R8

STM32F302xC
STM32F302CB, STM32F302RB, STM32F302VB,

STM32F302CC, STM32F302RC and STM32F302VC

STM32F302xE
STM32F302RD, STM32F302VD, STM32F302ZD, STM32F302RE, STM32F302VE

and STM32F302ZE

STM32F303x8
STM32F303K6, STM32F303C6, STM32F303R6,

STM32F303K8, STM32F303C8 and STM32F303R8

STM32F303xC
STM32F303CB, STM32F303RB, STM32F303VB,

STM32F303CC, STM32F303RC and STM32F303VC

STM32F303xE
STM32F303RD, STM32F303VD, STM32F303ZD, STM32F303RE, STM32F303VE

and STM32F303ZE

STM32F373xC

STM32F373C8, STM32F373R8, STM32F373V8,

STM32F373CB, STM32F373RB, STM32F373VB,

STM32F373CC, STM32F373RC and STM32F373VC

STM32F334x8

STM32F334K4, STM32F334C4, STM32F334R4,

STM32F334K6, STM32F334C6, STM32F334R6,

STM32F334K8, STM32F334C8 and STM32F334R8

STM32F318xx STM32F318K8 and STM32F318C8

STM32F328xx STM32F328C8 and STM32F328R8

STM32F358xx STM32F358CC, STM32F358RC and STM32F358VC

STM32F378xx STM32F378CC, STM32F378RC and STM32F378VC

STM32F398xx STM32F398VE

STM32CubeF3 firmware package overview UM1766

13/29 DocID026352 Rev 8

STM32CubeF3 features a rich set of examples and applications at all levels making it easy

to understand and use any HAL driver and/or middleware components. These examples are

running on the STMicroelectronics boards listed in Table 2.

STM32CubeF3 supports Nucleo-32, Nucleo-64 and Nucleo-144 boards.

• Nucleo-64 and Nucleo-144 boards support Adafruit LCD display Arduino™ UNO

shields which embed a microSD connector and a joystick in addition to the LCD.

• Nucleo-32 boards support Gravitech 7-segment display Arduino™ NANO shields

which allow displaying up to four-digit numbers and characters.

The Arduino™ shield drivers are provided within the BSP component. Their usage is

illustrated by a demonstration firmware.

The STM32CubeF3 firmware can run on any compatible hardware. Simply update the BSP

drivers to port the provided examples on your board if its hardware features are the same

(e.g. LED, LCD display, buttons).

Table 2. Boards for STM32F3 Series

Board part number STM32F3 devices supported

NUCLEO-F303RE STM32F303RE

STM32303E-EVAL STM32F303VE

32F3348DISCOVERY STM32F334C8

NUCLEO-F334R8 STM32F334R8

NUCLEO-F302R8 STM32F302R8

STM32373C-EVAL STM32F373VC

NUCLEO-F303K8 STM32F303K8

NUCLEO-F303ZE STM32F303ZE

STM32F3DISCOVERY STM32F303VC

STM32303C-EVAL STM32F303VC

DocID026352 Rev 8 14/29

UM1766 STM32CubeF3 firmware package overview

28

3.2 Firmware package overview

The STM32CubeF3 firmware solution is provided in one single zip package having the

structure shown in Figure 3.

Figure 3. STM32CubeF3 firmware package structure

For each board, a set of examples are provided with pre-configured projects for EWARM,

MDK-ARM™, TrueSTUDIO® and SW4STM32 toolchains.

STM32CubeF3 firmware package overview UM1766

15/29 DocID026352 Rev 8

Figure 4 shows the structure of projects for the STM32303E-EVAL board.

Figure 4. STM32CubeF3 example overview

The examples are organized depending on the STM32Cube level they apply to, and are

named as described below:

• Examples in level 0 are called Examples, Examples_LL and Examples_MIX. They use,

respectively, HAL drivers, LL drivers and a mix of HAL and LL drivers without any

middleware component.

• Examples in level 1 are called Applications. They provide typical use cases of each

middleware component.

The template projects available in the Templates and Templates_LL directories allow to

quickly build any firmware application on a given board.

DocID026352 Rev 8 16/29

UM1766 STM32CubeF3 firmware package overview

28

All examples have the same structure,

• \Inc folder that contains all header files

• \Src folder for the sources code

• \EWARM, \MDK-ARM, \TrueSTUDIO and \SW4STM32 folders contain the pre-

configured project for each toolchain.

• readme.txt describing the example behavior and needed environment to make it

working

Table 3 provides the number of projects available for each board.

U
M

1
7

6
6

S
T

M
3
2

C
u

b
e
F

3
 firm

w
a

re
 p

a
c

k
a

g
e
 o

v
e

rv
ie

w

D
o
c
ID

0
2
6

3
5
2
 R

e
v
 8

1
7

/2
9

Table 3. Number of examples available for each board

Level
Nucleo-

F303RE

STM32303E-

EVAL

STM32F3348-

Discovery

Nucleo-

F334R8

Nucleo-

F302R8

STM32373C-

EVAL

Nucleo-

F303K8

STM32F3-

Discovery

Nucleo-

F303ZE

STM32303C-

EVAL
Total

Templates_LL 1 1 1 1 1 1 1 1 1 1 10

Templates 1 1 1 1 1 1 1 1 1 1 10

Examples_MIX 0 0 0 9 1 0 0 0 0 0 10

Examples_LL 0 0 1 67 5 0 0 0 1 0 74

Examples 26 43 24 4 33 42 30 40 38 57 337

Demonstrations 1 0 1 1 1 0 1 1 1 0 7

Applications 8 19 1 1 3 22 1 3 3 16 77

Total 37 64 29 84 45 66 34 46 45 75 525

DocID026352 Rev 8 18/29

UM1766 Getting started with STM32CubeF3

28

4 Getting started with STM32CubeF3

4.1 Running the first example

This section explains how to run a first example within STM32CubeF3, using as illustration

the generation of a simple LED toggle running on STM32F302R8 Nucleo board:

1. Download the STM32CubeF3 firmware package. Unzip it into a directory of your

choice. Make sure not to modify the package structure shown in Figure 4. Note that it is

also recommended to copy the package at a location close to your root volume (for

example C:\Eval or G:\Tests) because some IDEs encounter problems when the

path length is too long.

2. Browse to \Projects\STM32F302R8-Nucleo\Examples

3. Open \GPIO, then \GPIO_EXTI folder

4. Open the project with your preferred toolchain (*)

5. Rebuild all files and load your image into target memory

6. Run the example: each time you press the USER push button, the LED2 toggles (for

more details, refer to the example readme file).

(*) The following section provides a quick overview on how to open, build and run an

example with the supported toolchains:

• EWARM

– Under the example folder, open \EWARM subfolder

– Launch the Project.eww workspace(a)

– Rebuild all files: Project->Rebuild all

– Load the project image: Project->Debug

– Run the program: Debug->Go(F5)

• MDK-ARM™

– Under the example folder, open \MDK-ARM subfolder

– Launch the Project.uvproj workspace(a)

– Rebuild all the files: Project->Rebuild all target files

– Load the project image: Debug->Start/Stop Debug Session

– Run the program: Debug->Run (F5)

• TrueSTUDIO®

– Open the TrueSTUDIO® toolchain

– Select File->Switch Workspace->Other and browse to TrueSTUDIO workspace

directory

– Select File->Import, select General->'Existing Projects into Workspace' and then

Select "Next".

– Browse to the TrueSTUDIO workspace directory, select the project

– Rebuild all the project files: select the project in the "Project explorer"

window then select Project->build project menu.

– Run the program: Run->Debug (F11)

a. The workspace name may change from one example to another.

Getting started with STM32CubeF3 UM1766

19/29 DocID026352 Rev 8

• SW4STM32

a) Open the SW4STM32 toolchain.

b) Click File->Switch Workspace->Other and browse to the SW4STM32

workspace directory.

c) Click File->Import, select General->'Existing Projects into Workspace' and

then click "Next".

d) Browse to the SW4STM32 workspace directory and select the project.

e) Rebuild all project files: select the project in the "Project explorer" window then

click Project->build project menu.

f) Run program: Run->Debug (F11).

4.2 Developing your own application

4.2.1 HAL application

This section describes the steps required to create your own application using

STM32CubeF3.

1. Create your project

To create a new project you can either start from the Template project provided for each

board under \Projects\<STM32xxx_yyy>\Templates or from any available

project under \Projects\<STM32xxy_yyy>\Examples or

\Projects\<STM32xx_yyy>\Applications (where <STM32xxx_yyy> refers to

the board name, for example STM32303C_EVAL).

The Template project provides an empty main loop function. It is a good starting point

to get familiar with project settings for the STM32CubeF3. The template has the

following characteristics:

a) It contains sources of HAL, CMSIS and BSP drivers which are the minimal

components to develop a code on a given board.

b) It contains the include paths for all the firmware components.

c) It defines the STM32F3 device supported, allowing to configure the CMSIS and

HAL drivers accordingly.

d) It provides ready-to-use user files pre-configured as shown below

- HAL is initialized with the default timebase with ARM Core SysTick,

- SysTick ISR is implemented for HAL_Delay() purpose,

- System clock is configured with the minimum frequency of the device (HSI) for

an optimum power consumption.

Note: When copying an existing project to another location, make sure to update the included

paths.

2. Add the necessary middleware to your project (optional)

The available middleware stacks are: USB Device Library, STemWin, Touch Sensing

Library, FreeRTOS and FatFS. To know which source files you need to add in the

project files list, refer to the documentation provided for each middleware. You may

also look at the Applications available under

\Projects\STM32xxx_yyy\Applications\<MW_Stack> (where <MW_Stack>

refers to the middleware stack, for example USB_Device) to see which sources files

and include paths need to be added.

DocID026352 Rev 8 20/29

UM1766 Getting started with STM32CubeF3

28

3. Configure the firmware components

The HAL and middleware components offer a set of build time configuration options

using macros “#define” declared in a header file. A template configuration file is

provided within each component, it has to be copied to the project folder (usually the

configuration file is named xxx_conf_template.h, the word “_template” needs to be

removed when copying the file into the project folder). The configuration file provides

enough information to know the impact of each configuration option; more detailed

information is available in the documentation provided for each component.

4. Start the HAL Library

After jumping to the main program, the application code calls the HAL_Init() API to

initialize the HAL Library, which does the following:

a) configuration of the Flash prefetch and SysTick interrupt priority (configured by

user through macros defined in stm32f3xx_hal_conf.h),

b) configuration of the SysTick to generate an interrupt each 1 ms at the SysTick

interrupt priority TICK_INT_PRIO defined in stm32f3xx_hal_conf.h, which is

clocked by the HSI (at this stage, the clock is not yet configured and thus the

system is running from the internal HSI at 8 MHz),

c) Setting of NVIC Group Priority to 4,

d) Calling of HAL_MspInit() callback function defined in the user file

stm32f3xx_hal_msp.c, to run the global low level hardware initializations.

5. Configure the system clock

The system clock configuration is done by calling the two APIs described below:

a) HAL_RCC_OscConfig(): configures the internal and/or external oscillators, PLL

source and factors. The user may select to configure one oscillator or all

oscillators. The PLL configuration can be skipped if there is no need to run the

system at high frequency.

b) HAL_RCC_ClockConfig(): configures the system clock source, the Flash latency

and AHB and APB prescalers.

The parameters of the clock configuration functions can be evaluated thanks to the

Clock Configuration tab of the STM32CubeMX tool.

6. Peripheral initialization

a) Start by writing the peripheral HAL_PPP_MspInit function. For this function,

please proceed as follows:

- Enable the peripheral clock.

- Configure the peripheral GPIOs.

- Configure the DMA channel and enable the DMA interrupt (if needed).

- Enable the peripheral interrupt (if needed).

b) Edit the stm32xxx_it.c to call the required interrupt handlers (peripheral and DMA),

if needed.

c) Write process complete callback functions if you plan to use peripheral interrupt or

DMA.

d) In your main.c file, initialize the peripheral handle structure then call the function

HAL_PPP_Init() to initialize your peripheral.

Getting started with STM32CubeF3 UM1766

21/29 DocID026352 Rev 8

7. Develop your application

At this stage, your system is ready and you can start developing your application code.

a) The HAL provides intuitive and ready to use APIs to configure the peripheral, and

support polling, IT and DMA programming model, to accommodate any

application requirements. For more details on how to use each peripheral, refer to

the extensive set of examples provided.

b) If your application has some real time constraints, you can find a large set of

examples showing how to use FreeRTOS and its integration with all middleware

stacks provided within STM32CubeF3. This can be a good starting point for your

development.

Caution: In the default HAL implementation, SysTick timer is the source of time base. It is used to

generate interrupts at regular time intervals. Take care if HAL_Delay() is called from the

peripheral ISR process. The SysTick interrupt must have higher priority (numerically lower)

than the peripheral interrupt. Otherwise, the caller ISR process is blocked. Functions

affecting the time base configurations are declared as __weak to make the override

possible in case of other implementations in user file (using a general purpose timer for

example or other time source). For more details please refer to HAL_TimeBase example.

DocID026352 Rev 8 22/29

UM1766 Getting started with STM32CubeF3

28

4.2.2 LL application

This section describes the steps needed to create your own LL application using

STM32CubeF3.

1. Create your project

To create a new project you can either start from the Templates_LL project provided for

each board under \Projects\<STM32xxx_yyy>\Templates_LL or from any available

project under \Projects\<STM32xxy_yyy>\Examples_LL (<STM32xxx_yyy> refers to

the board name, such as NUCLEO-F334R8).

The Template project provides an empty main loop function, however it is a good

starting point to get familiar with project settings for STM32CubeF3.

Template main characteristics are the following:

– It contains the source codes of the LL and CMSIS drivers which are the minimal

components needed to develop code on a given board.

– It contains the include paths for all the required firmware components.

– It selects the supported STM32F3 device and allows to configure the CMSIS and

LL drivers accordingly.

– It provides ready-to-use user files, that are pre-configured as follows:

main.h : LED & USER_BUTTON definition abstraction layer.

main.c : System clock configuration for maximum frequency.

2. Port an existing project to another board

To port an existing project to another target board, start from the Templates_LL project

provided for each board and available under

\Projects\<STM32xxx_yyy>\Templates_LL:

a) Select a LL example

To find the board on which LL examples are deployed, refer to the list of LL

examples STM32CubeProjectsList.html, to Table 3: Number of examples

available for each board or to application note “STM32Cube firmware examples

for STM32F3 Series” (AN4734)

b) Port the LL example

– Copy/paste the Templates_LL folder - to keep the initial source - or directly update

existing Templates_LL project.

– Then porting consists principally in replacing Templates_LL files by the

Examples_LL targeted project.

– Keep all board specific parts. For reasons of clarity, board specific parts have been

flagged with specific tags:

/* ============== BOARD SPECIFIC CONFIGURATION CODE BEGIN ============== */

/* ============== BOARD SPECIFIC CONFIGURATION CODE END ============== */

Thus the main porting steps are the following:

– Replace the stm32F3xx_it.h file

– Replace the stm32F3xx_it.c file

– Replace the main.h file and update it: Keep the LED and user button definition of

the LL template under "BOARD SPECIFIC CONFIGURATION" tags.

Getting started with STM32CubeF3 UM1766

23/29 DocID026352 Rev 8

– Replace the main.c file and update it:

Keep the clock configuration of the SystemClock_Config() LL template function

under "BOARD SPECIFIC CONFIGURATION" tags.

Depending on LED definition, replace each LEDx occurrence with another LEDy

available in main.h.

Thanks to these adaptations, the example should be functional on the targeted board.

4.3 Using STM32CubeMX to generate the initialization C code

An alternative to steps 1 to 6 described in Section 4.2 consists of using the STM32CubeMX

tool to generate the code for the initialization of the system, the peripherals and middleware

 (steps 1 to 6 above) through a step-by-step process:

• Select the STMicroelectronics STM32 microcontroller that matches the required set of

peripherals.

• Configure each required embedded software using the pinout-conflict solver, a clock-

tree setting helper, a power consumption calculator, and the utility performing MCU

peripheral configuration (for example GPIO, USART) and middleware stacks (for

example USB).

• Generate the initialization C code based on the configuration selected. This code is

ready to use within several development environments. The user code is kept at the

next code generation.

For more information refer to STM32CubeMX user manual UM1718, available on

www.st.com.

4.4 Getting STM32CubeF3 release updates

The STM32CubeF3 firmware package comes with an updater utility: STM32CubeUpdater,

also available as a menu within STM32CubeMX code generation tool.

The updater solution detects new firmware releases and patches available on www.st.com

and proposes the download on the user’s computer.

Installing and running the STM32CubeUpdater program

The STM32CubeUpdater.exe is available under \Utilities\PC_Software.

• Double-click the SetupSTM32CubeUpdater.exe file to launch the installation.

• Accept the license terms and follow the different installation steps.

Upon successful installation, STM32CubeUpdater becomes available as an

STMicroelectronics program under Program Files and is automatically launched. The

STM32CubeUpdater icon appears in the system tray:

Right-click the updater icon and select Updater Settings to configure the Updater

connection and whether to perform manual or automatic checks (see STM32CubeMX User

guide - UM1718 section 3 - for more details on Updater configuration).

DocID026352 Rev 8 24/29

UM1766 FAQs

28

5 FAQs

5.1 What is the license scheme for the STM32CubeF3 firmware?

The HAL is distributed under a non-restrictive BSD (Berkeley Software Distribution) license.

The middleware stacks made by ST (USB Device Libraries, STemWin) come with a

licensing model that ensures easy reuse, provided it runs on an ST device.

The middleware based on well-known open-source solutions (FreeRTOS and FatFs) have

user-friendly license terms. For more details, refer to the license agreement of each

middleware.

5.2 Which boards are supported by the STM32CubeF3 firmware
package?

The STM32CubeF3 firmware package provides BSP drivers and ready-to-use examples for

the following STM32F3 boards:

• STM32303C-EVAL

• STM32303E-EVAL

• STM32373C-EVAL

• STM32F3DISCOVERY

• 32F3348DISCOVERY

• NUCLEO-F302R8

• NUCLEO-F303RE

• NUCLEO-F303ZE

• NUCLEO-F334R8

• NUCLEO-F303K8.

5.3 Are any examples provided with the ready-to-use toolset
projects?

Yes. STM32CubeF3 provides an extensive set of examples and applications (around 70 for

STM32303C-EVAL). They come with the pre-configured project of several tool sets: IAR™,

Keil® and GCC.

5.4 Is there any link with Standard Peripheral Libraries?

The STM32Cube HAL Layer is the replacement of the Standard Peripheral Library.

The HAL APIs offer a higher abstraction level compared to the standard peripheral APIs.

HAL focuses on peripheral common functionalities rather than hardware. The higher

abstraction level allows to define a set of user friendly APIs that can be easily ported from

one product to another.

Although the existing Standard Peripheral Libraries are supported, they are not

recommended for new designs.

FAQs UM1766

25/29 DocID026352 Rev 8

5.5 Does the HAL take benefit from interrupts or DMA?

How can this be controlled?

Yes. The HAL supports three API programming models: polling, interrupt and DMA (with or

without interrupt generation).

5.6 How are the product/peripheral specific features managed?

The HAL offers extended APIs, that is, specific functions as add-ons to the common API to

support features available on some products/lines only.

5.7 How can STM32CubeMX generate code based on embedded
software?

STM32CubeMX has a built-in knowledge of STM32 microcontrollers, including their

peripherals and software. This enables the tool to provide a graphical representation to the

user and generate *.h/*.c files based on the user configuration.

5.8 How can the user get regular updates on the latest
STM32CubeF3 firmware releases?

The STM32CubeF3 firmware package comes with an updater utility, STM32CubeUpdater,

that can be configured for automatic or on-demand checks for new firmware package

updates (new releases or/and patches).

STM32CubeUpdater is also integrated within the STM32CubeMX tool. When using this tool

for STM32F3 configuration and initialization C code generation, the user can benefit from

STM32CubeMX self-updates as well as STM32CubeF3 firmware package updates.

For more details, refer to Section 4.4.

5.9 When to use HAL versus LL drivers?

HAL drivers offer high-level and function-oriented APIs, with a high level of portability.

Product/IPs complexity is hidden for end users.

LL drivers offer low-level APIs at registers level, with a better optimization but less

portability. They require a deep knowledge of product/IPs specifications.

5.10 How can the user include LL drivers in his/her environment?

Is there any LL configuration file as for HAL?

There is no configuration file. Source code shall directly include the necessary

stm32f3xx_ll_ppp.h file(s).

	Contact us
	1 STM32CubeF3 main features
	Figure 1. STM32Cube firmware components

	2 STM32CubeF3 architecture overview
	Figure 2. STM32CubeF3 firmware architecture
	2.1 Level 0
	2.1.1 Board Support Package (BSP)
	2.1.2 Hardware Abstraction Layer (HAL) and Low Layer (LL)
	2.1.3 Basic peripheral usage examples

	2.2 Level 1
	2.2.1 Middleware components
	2.2.2 Examples based on the middleware components

	2.3 Level 2

	3 STM32CubeF3 firmware package overview
	3.1 Supported STM32F3 devices and hardware
	Table 1. Macros for STM32F3 Series
	Table 2. Boards for STM32F3 Series

	3.2 Firmware package overview
	Figure 3. STM32CubeF3 firmware package structure
	Figure 4. STM32CubeF3 example overview
	Table 3. Number of examples available for each board

	4 Getting started with STM32CubeF3
	4.1 Running the first example
	4.2 Developing your own application
	4.2.1 HAL application
	4.2.2 LL application

	4.3 Using STM32CubeMX to generate the initialization C code
	4.4 Getting STM32CubeF3 release updates

	5 FAQs
	5.1 What is the license scheme for the STM32CubeF3 firmware?
	5.2 Which boards are supported by the STM32CubeF3 firmware package?
	5.3 Are any examples provided with the ready-to-use toolset projects?
	5.4 Is there any link with Standard Peripheral Libraries?

