
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

September 2011 Doc ID 022172 Rev 1 1/46

UM1467
User manual

Getting started with software and firmware environments

for the STM32F4DISCOVERY Kit

1 Introduction

This document describes the software, firmware environment and development

recommendations required to build an application around the STM32F4DISCOVERY board.

It presents the firmware applications package provided within this board with details on its

architecture and contents. It provides guidelines to novice users on how to build and run a

sample application and allows them to create and build their own application.

This document is structured as follows:

■ System requirements to use this board and how to run the built-in demonstration are

provided in Section 2: Getting started.

■ Section 3 describes the firmware applications package.

■ Section 5 presents development toolchain installation and overview of ST-LINK/V2

interface.

■ Section 6, Section 7, Section 8, and Section 9 introduce how to use the following software

development toolchains:

– IAR Embedded Workbench® for ARM (EWARM) by IAR Systems

– Microcontroller Development Kit for ARM (MDK-ARM) by Keil™

– TrueSTUDIO® by Atollic

– TASKING VX-toolset for ARM Cortex by Altium

Although this user manual cannot cover all the topics relevant to software development

environments; it demonstrates the first basic steps necessary to get started with the

compilers/debuggers.

Reference documents

■ STM32F4DISCOVERY high-performance discovery board data brief

■ STM32F4DISCOVERY peripherals firmware examples (AN3983)

■ STM32F40x reference manual (RM0090)

■ STM32F405xx STM32F407xx datasheet

The above documents are available at www.st.com/stm32f4-discovery.

www.st.com

UM1467 Contents

Doc ID 022172 Rev 1 2/46

Contents

1 Introduction . 1

2 Getting started . 4

2.1 System requirements . 4

2.2 Running the built-in demonstration . 5

3 Description of the firmware package . 6

3.1 Libraries folder . 6

3.1.1 CMSIS subfolder . 6

3.1.2 STM32_USB_Device_Library subfolder . 7

3.1.3 STM32_USB_HOST_Library subfolder . 7

3.1.4 STM32_USB_OTG_Driver subfolder . 7

3.1.5 STM32F4xx_StdPeriph_Driver subfolder . 7

3.2 Project folder . 7

3.2.1 Demonstration subfolder . 7

3.2.2 Master_Workspace subfolder . 8

3.2.3 Peripheral_Examples subfolder . 8

3.3 Utilities folder . 8

4 Binary images for reprogramming firmware applications 9

5 ST-LINK/V2 installation and development . 10

6 Using IAR Embedded Workbench® for ARM . 11

6.1 Building an existing EWARM project . 11

6.2 Debugging and running your EWARM project . 12

6.3 Creating your first application using the EWARM toolchain 14

6.3.1 Managing source files . 14

6.3.2 Configuring project options . 16

7 Using MDK-ARM Microcontroller Development Kit by Keil™ 20

7.1 Building an existing MDK-ARM project . 20

7.2 Debugging and running your MDK-ARM project 21

7.3 Creating your first application using the MDK-ARM toolchain 23

Contents UM1467

3/46 Doc ID 022172 Rev 1

7.3.1 Managing source files . 23

7.3.2 Configuring project options . 25

8 Using Atollic TrueSTUDIO® . 28

8.1 Building an existing TrueSTUDIO project . 28

8.2 Debugging and running your TrueSTUDIO project 31

8.3 Creating your first application using TrueSTUDIO toolchain 32

9 Using TASKING . 36

9.1 Building an existing TASKING project . 36

9.2 Debugging and running your TASKING project . 40

9.3 Creating your first application using TASKING toolchain 41

10 Revision history . 45

UM1467 Getting started

Doc ID 022172 Rev 1 4/46

2 Getting started

2.1 System requirements

Before running your application, you should establish the connection with the

STM32F4DISCOVERY board as following.

Figure 1. Hardware environment

To run and develop any firmware applications on your STM32F4DISCOVERY board, the

minimum requirements are as follows:

– Windows PC (2000, XP, Vista, 7)

– 'USB type A to Mini-B' cable, used to power the board (through USB connector

CN1) from host PC and connect to the embedded ST-LINK/V2 for debugging and

programming

Additional hardware accessories will be needed to run some applications:

– 'USB type A to Micro-B' cable, used to connect the board (through USB connector

CN5) as USB Device to host PC.

– Headphone with male jack connector.

Getting started UM1467

5/46 Doc ID 022172 Rev 1

2.2 Running the built-in demonstration

The board comes with the demonstration firmware preloaded in the Flash memory. Follow

the steps below to run it:

– Check jumper position on the board, JP1 on, CN3 on (Discovery selected).

– Connect the STM32F4DISCOVERY board to a PC with a 'USB type A to Mini-B'

cable through USB connector CN1 to power the board. Red LED LD2 (PWR) then

lights up.

– Four LEDs between B1 and B2 are blinking.

– Press User Button B1 then MEMS sensor is enabled, move the board and observe

the four LEDs blinking according to the motion direction and speed.

– If you connect a second 'USB type A to Micro-B' cable between PC and CN5

connector then the board is recognized as standard mouse and its motion will also

control the PC cursor.

UM1467 Description of the firmware package

Doc ID 022172 Rev 1 6/46

3 Description of the firmware package

The STM32F4DISCOVERY firmware applications are provided in one single package and

supplied in one single zip file. The extraction of the zip file generates one folder,

STM32F4-Discovery_FW_VX.Y.Z, which contains the following subfolders:

Figure 2. Hardware environment

1. VX.Y.Z refer to the package version, ex. V1.0.0

3.1 Libraries folder

This folder contains the Hardware Abstraction Layer (HAL) for STM32F4xx Devices.

3.1.1 CMSIS subfolder

This subfolder contains the STM32F4xx and Cortex-M4F CMSIS files.

Cortex-M4F CMSIS files consist of:

– Core Peripheral Access Layer: contains name definitions, address definitions and

helper functions to access Cortex-M4F core registers and peripherals. It defines also

a device independent interface for RTOS Kernels that includes debug channel

definitions.

– CMSIS DSP Software Library: features a suite of common signal processing

functions for use on Cortex-M processor based devices. The library is completely

written in C and is fully CMSIS compliant. High performance is achieved through

maximum use of Cortex-M4F intrinsics.

STM32F4xx CMSIS files consist of:

– stm32f4xx.h: this file contains the definitions of all peripheral registers, bits, and

memory mapping for STM32F4xx devices. The file is the unique include file used in

the application programmer C source code, usually in the main.c.

– system_stm32f4xx.c/.h: This file contains the system clock configuration for

STM32F4xx devices. It exports SystemInit() function which sets up the system

Description of the firmware package UM1467

7/46 Doc ID 022172 Rev 1

clock source, PLL multiplier and divider factors, AHB/APBx prescalers and Flash

settings. This function is called at startup just after reset and before connecting to the

main program. The call is made inside the startup_stm32f4xx.s file.

– startup_stm32f4xx.s: Provides the Cortex-M4F startup code and interrupt vectors for

all STM32F4xx device interrupt handlers.

3.1.2 STM32_USB_Device_Library subfolder

This subfolder contains USB Device Library Core and the class drivers.

The Core folder contains the USB Device library machines as defined by the revision 2.0

Universal Serial Bus Specification.

The Class folder contains all the files relative to the Device class implementation. It is

compliant with the specification of the protocol built in these classes.

3.1.3 STM32_USB_HOST_Library subfolder

This subfolder contains USB Host Library Core and the class drivers.

The Core folder contains the USB Host library machines as defined by the revision 2.0

Universal Serial Bus Specification.

The Class folder contains all the files relative to the Host class implementation. It is

compliant with the specification of the protocol built in these classes.

3.1.4 STM32_USB_OTG_Driver subfolder

This subfolder contains the low level drivers for STM32F4xx USB HS and FS cores. It

provides an hardware abstraction layer, USB communication operations and interfaces used

by the high level Host and Device Libraries to access the core.

3.1.5 STM32F4xx_StdPeriph_Driver subfolder

This subfolder contains sources of STM32F4xx peripheral drivers (excluding USB and

Ethernet).

Each driver consists of a set of routines and data structures covering all peripheral

functionalities. The development of each driver is driven by a common API (application

programming interface) which standardizes the driver structure, the functions and the

parameter names.

Each peripheral has a source code file, stm32f4xx_ppp.c, and a header file,

stm32f4xx_ppp.h. The stm32f4xx_ppp.c file contains all the firmware functions required to

use the PPP peripheral.

3.2 Project folder

This folder contains the source files of the STM32F4DISCOVERY firmware applications.

3.2.1 Demonstration subfolder

This subfolder contains the demonstration source files with preconfigured project for

EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains.

UM1467 Description of the firmware package

Doc ID 022172 Rev 1 8/46

A binary images (*.hex and *.dfu) of this demonstration is provided under Binary subfolder.

You can use the STM32F4xx’s embedded Bootloader or any in-system programming tool to

reprogram the demonstration using this binary image.

3.2.2 Master_Workspace subfolder

This subfolder contains, for some toolchains, a multi-project workspace allowing you to

manage all the available projects (provided under the subfolders listed below) from a single

workspace window.

3.2.3 Peripheral_Examples subfolder

This subfolder contains a set of examples for some peripherals with preconfigured projects

for EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains. See Section 5 and

STM32F4DISCOVERY peripheral firmware examples, AN3983, for further details.

3.3 Utilities folder

This folder contains the abstraction layer for the STM32F4DISCOVERY hardware. It

provides the following drivers:

– stm32f4_discovery.c: provides functions to manage the user push button and 4 LEDs

(LD3.LD6)

– stm32f4_discovery_audio_codec.c/.h: provides functions to manage the audio DAC

(CS43L22)

– stm32f4_discovery_lis302dl.c/.h: provides functions to manage the MEMS

accelerometer (LIS302DL).

Binary images for reprogramming firmware applications UM1467

9/46 Doc ID 022172 Rev 1

4 Binary images for reprogramming firmware
applications

This section describes how to use the provided binary images to reprogram the firmware

applications. The STM32F4DISCOVERY firmware package contains binary images (*.hex

and *.dfu) of the provided applications which allow to use the STM32F4xx's embedded

Bootloader or any in-system programming tool to reprogram these applications easily.

Below are the steps to follow:

● Using “in-system programming tool”

– Connect the STM32F4DISCOVERY board to a PC with a 'USB type A to Mini-B'

cable through USB connector CN1 to power the board.

– Make sure that the embedded ST-LINK/V2 is configured for in-system

programming (both CN3 jumpers ON).

– Use *.hex binary (for example,

\Project\Demonstration\Binary\STM32F4-Discovery_Demonstration_V1.0.0.hex)

with your preferred in-system programming tool to reprogram the demonstration

firmware (ex. STM32 ST-LINK Utility, available for download from www.st.com).

● Using “Bootloader (USB FS Device in DFU mode)”

– Configure the STM32F4DISCOVERY board to boot from “System Memory” (boot

pins BOOT0:1 / BOOT1:0)

– Set BOOT0 pin to high level: on the male header P2 place a jumper between

BOOT0 pin and VDD pin

– Set BOOT1(PB2) pin to low level: on the male header P1 place a jumper between

PB2 pin and GND pin

– Connect a 'USB type A to Mini-B' cable between PC and USB connector CN1 to

power the board.

– Connect a 'USB type A to Micro-B' cable between PC and USB connector CN5,

the board will be detected as USB device.

– Use *.dfu binary (for example,

\Project\Demonstration\Binary\STM32F4-Discovery_Demonstration_V1.0.0.dfu)

with “DFUse\DFUse Demonstration" tool (available for download from

www.st.com) to reprogram the demonstration firmware.

UM1467 ST-LINK/V2 installation and development

Doc ID 022172 Rev 1 10/46

5 ST-LINK/V2 installation and development

STM32F4DISCOVERY board includes an ST-LINK/V2 embedded debug tool interface that

is supported by the following software toolchains:

● IAR™ Embedded Workbench for ARM (EWARM) available from www.iar.com

The toolchain is installed by default in the C:\Program Files\IAR Systems\Embedded

Workbench 6.2 directory on the PC’s local hard disk.

After installing EWARM, install the ST-LINK/V2 driver by running the

ST-Link_V2_USB.exe from [IAR_INSTALL_DIRECTORY]\Embedded Workbench

6.2\arm\drivers\ST-Link \ST-Link_V2_USBdriver.exe

● RealView Microcontroller Development Kit (MDK-ARM) toolchain available from

www.keil.com

The toolchain is installed by default in the C:\Keil directory on the PC’s local hard disk;

the installer creates a start menu µVision4 shortcut.

When connecting the ST-LINK/V2 tool, the PC detects new hardware and asks to install

the ST-LINK_V2_USB driver. The “Found New Hardware wizard” appears and guides

you through the steps needed to install the driver from the recommended location.

● Atollic TrueSTUDIO® STM32 available from www.atollic.com

The toolchain is installed by default in the C:\Program Files\Atollic directory on the PC’s

local hard disk.

The ST-Link_V2_USB.exe is installed automatically when installing the software

toolchain.

● Altium™ TASKING VX-toolset for ARM® Cortex-M available from www.tasking.com

The toolchain is installed by default in the “C:\Program Files\TASKING directory on the

PC’s local hard disk. The ST-Link_V2_USB.exe is installed automatically when

installing the software toolchain.

Note: The embedded ST-LINK/V2 supports only SWD interface for STM32 devices.

Refer to the firmware package release notes for the version of the supporting development

toolchains.

Using IAR Embedded Workbench® for ARM UM1467

11/46 Doc ID 022172 Rev 1

6 Using IAR Embedded Workbench® for ARM

6.1 Building an existing EWARM project

The following is the procedure for building an existing EWARM project.

1. Open the IAR Embedded Workbench® for ARM (EWARM).

Figure 3 shows the basic names of the windows referred to in this document.

Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)

2. In the File menu, select Open and click Workspace to display the Open Workspace

dialog box. Browse to select the demonstration workspace file and click Open to launch

it in the Project window.

3. In the Project menu, select Rebuild All to compile your project.

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 12/46

4. If your project is successfully compiled, the following window in Figure 4 is displayed.

Figure 4. EWARM project successfully compiled

6.2 Debugging and running your EWARM project

In the IAR Embedded Workbench IDE, from the Project menu, select Download and

Debug or, alternatively, click the Download and Debug button the in toolbar, to program the

Flash memory and begin debugging.

Figure 5. Download and Debug button

The debugger in the IAR Embedded Workbench can be used to debug source code at C

and assembly levels, set breakpoints, monitor individual variables and watch events during

the code execution.

Using IAR Embedded Workbench® for ARM UM1467

13/46 Doc ID 022172 Rev 1

Figure 6. IAR Embedded Workbench debugger screen

To run your application, from the Debug menu, select Go. Alternatively, click the Go button

in the toolbar to run your application.

Figure 7. Go button

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 14/46

6.3 Creating your first application using the EWARM toolchain

6.3.1 Managing source files

Follow these steps to manage source files.

1. In the Project menu, select Create New Project and click OK to save your settings.

Figure 8. Create New Project dialog box

2. Name the project (for example, NewProject.ewp) and click Save to display the IDE

interface.

Figure 9. IDE interface

To create a new source file, in the File menu, open New and select File to open an empty

editor window where you can enter your source code.

Using IAR Embedded Workbench® for ARM UM1467

15/46 Doc ID 022172 Rev 1

The IAR Embedded Workbench enables C color syntax highlighting when you save your file

using the dialog File > Save As… under a filename with the *.c extension. In Figure 10:

main.c example file, the file is saved as main.c.

Figure 10. main.c example file

Once you have created your source file you can add this file to your project, by opening the

Project menu, selecting Add and adding the selected file as in Figure 11: Adding files to a

project.

Figure 11. Adding files to a project

If the file is added successfully, Figure 12: New project file tree structure is displayed.

Figure 12. New project file tree structure

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 16/46

6.3.2 Configuring project options

Follow these steps to configure project options.

1. In the Project Editor, right-click on the project name and select Options... to display the

Options dialog box as in Figure 13.

Figure 13. Configuring project options

2. In the Options dialog box, select the General Options category, open the Target tab

and select Device - ST -STM32F4xx.

Figure 14. General options > Target tab

Using IAR Embedded Workbench® for ARM UM1467

17/46 Doc ID 022172 Rev 1

3. Select the Linker category, open the Config tab, in the Linker configuration file pane

select Override default and click Edit to display the Linker configuration file editor.

Figure 15. Linker > Config tab

4. In the Linker configuration file editor dialog box, open the Vector Table tab and set

the .intvec.start variable to 0x08000000.

Figure 16. Linker configuration file editor dialog box > Vector Table tab

5. Open the Memory Regions tab, and enter the variables as shown in Figure 17.

Figure 17. Linker configuration file editor dialog box > Memory Regions tab

6. Click Save to save the linker settings automatically in the Project directory.

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 18/46

7. If your source files include header files, select the C/C++ Compiler category, open the

Preprocessor tab, and specify their paths as shown in Figure 18. The path of the

include directory is a relative path, and always starts with the project directory location

referenced by $PROJ_DIR$

Figure 18. C/C++ Compiler > Preprocessor tab

8. To set up the ST-Link embedded debug tool interface, select the Debugger category,

open the Setup tab and from the drop-down Driver menu, select ST-Link as shown in

Figure 19.

Figure 19. Debugger > Setup tab

9. Open the Debugger tab and select Use flash loader(s) as shown in Figure 20.

Figure 20. Select Flash loaders

Using IAR Embedded Workbench® for ARM UM1467

19/46 Doc ID 022172 Rev 1

10. Select the ST-Link category, open the ST-Link tab and select SWD as the connection

protocol as shown in Figure 21.

Figure 21. ST-Link communication protocol

11. Click OK to save the project settings.

12. To build your project, follow the instructions given in Section 6.1: Building an existing

EWARM project on page 11.

13. Before running your application, establish the connection with the

STM32F4DISCOVERY board as described in Section 2: Getting started.

14. To program the Flash memory and begin debugging, follow the instructions given in

Section 6.2: Debugging and running your EWARM project on page 12.

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

Doc ID 022172 Rev 1 20/46

7 Using MDK-ARM Microcontroller Development Kit by
Keil™

7.1 Building an existing MDK-ARM project

Follow these steps to build an existing MDK-ARM project.

1. Open the MDK-ARM µVision4 IDE, debugger, and simulation environment.

Figure 22: MDK-ARM µVision4 IDE environment shows the basic names of the

windows referred to in this section.

Figure 22. MDK-ARM µVision4 IDE environment

2. In the Project menu, select Open Project... to display the Select Project File dialog

box. Browse to select the STM32F4-Discovery.uvproj project file and click Open to

launch it in the Project window.

3. In the Project menu, select Rebuild all target files to compile your project.

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

21/46 Doc ID 022172 Rev 1

4. If your project is successfully compiled, the following Build Output window (Figure 23:

Build Output - MDK-ARM µVision4 project successfully compiled) is displayed.

Figure 23. Build Output - MDK-ARM µVision4 project successfully compiled

7.2 Debugging and running your MDK-ARM project

In the MDK-ARM µVision4 IDE, click the magnifying glass to program the Flash memory

and begin debugging as shown below in Figure 24.

Figure 24. Starting a MDK-ARM µVision4 debugging session

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

Doc ID 022172 Rev 1 22/46

The debugger in the MDK-ARM IDE can be used to debug source code at C and assembly

levels, set breakpoints, monitor individual variables and watch events during the code

execution as shown below in Figure 25.

Figure 25. MDK-ARM IDE workspace

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

23/46 Doc ID 022172 Rev 1

7.3 Creating your first application using the MDK-ARM toolchain

7.3.1 Managing source files

Follow these steps to manage source files.

1. In the Project menu, select New µVision Project... to display the Create Project File

dialog box. Name the new project and click Save.

Figure 26. Creating a new project

2. When a new project is saved, the IDE displays the Device selection dialog box. Select

the device used for testing. In this example, we will use the STMicroelectronics device

mounted on the STM32F4DISCOVERY board. In this case, double-click on

STMicroelectronics, select the STM32F407VGT6 device and click OK to save your

settings.

Figure 27. Device selection dialog box

3. Click Yes to copy the STM32 Startup Code to the project folder and add the file to the

project as shown in Figure 28.

Figure 28. Copy the STM32 Startup Code dialog box

Note: The default STM32 startup file includes the SystemInit function. You can either comment out

this file to not use it or add the system_stm32f4xx.c file from the STM32f4xx firmware

library.

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

Doc ID 022172 Rev 1 24/46

To create a new source file, in the File menu, select New to open an empty editor window

where you can enter your source code.

The MDK-ARM toolchain enables C color syntax highlighting when you save your file using

the dialog File > Save As… under a filename with the *.c extension. In this example

(Figure 29), the file is saved as main.c.

Figure 29. main.c example file

MDK-ARM offers several ways to add source files to a project. For example, you can select

the file group in the Project Window > Files page and right-click to open a contextual

menu. Select the Add Files... option, and browse to select the main.c file previously

created.

Figure 30. Adding source files

If the file is added successfully, the following window is displayed.

Figure 31. New project file tree structure

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

25/46 Doc ID 022172 Rev 1

7.3.2 Configuring project options

1. In the Project menu, select Options for Target 1 to display the Target Options dialog

box.

2. Open the Target tab and enter IROM1 and IARM1 start and size settings as shown in

Figure 32.

Figure 32. Target Options dialog box - Target tab

3. Open the Debug tab, click Use and select the ST-Link Debugger. Then, click Settings

and select the SWD protocol. Click OK to save the ST-Link setup settings.

4. Select Run to main().

	Contact us
	1 Introduction
	2 Getting started
	2.1 System requirements
	Figure 1. Hardware environment

	2.2 Running the built-in demonstration

	3 Description of the firmware package
	Figure 2. Hardware environment
	3.1 Libraries folder
	3.1.1 CMSIS subfolder
	3.1.2 STM32_USB_Device_Library subfolder
	3.1.3 STM32_USB_HOST_Library subfolder
	3.1.4 STM32_USB_OTG_Driver subfolder
	3.1.5 STM32F4xx_StdPeriph_Driver subfolder

	3.2 Project folder
	3.2.1 Demonstration subfolder
	3.2.2 Master_Workspace subfolder
	3.2.3 Peripheral_Examples subfolder

	3.3 Utilities folder

	4 Binary images for reprogramming firmware applications
	5 ST-LINK/V2 installation and development
	6 Using IAR Embedded Workbench® for ARM
	6.1 Building an existing EWARM project
	Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)
	Figure 4. EWARM project successfully compiled

	6.2 Debugging and running your EWARM project
	Figure 5. Download and Debug button
	Figure 6. IAR Embedded Workbench debugger screen
	Figure 7. Go button

	6.3 Creating your first application using the EWARM toolchain
	6.3.1 Managing source files
	Figure 8. Create New Project dialog box
	Figure 9. IDE interface
	Figure 10. main.c example file
	Figure 11. Adding files to a project
	Figure 12. New project file tree structure

	6.3.2 Configuring project options
	Figure 13. Configuring project options
	Figure 14. General options > Target tab
	Figure 15. Linker > Config tab
	Figure 16. Linker configuration file editor dialog box > Vector Table tab
	Figure 17. Linker configuration file editor dialog box > Memory Regions tab
	Figure 18. C/C++ Compiler > Preprocessor tab
	Figure 19. Debugger > Setup tab
	Figure 20. Select Flash loaders
	Figure 21. ST-Link communication protocol

	7 Using MDK-ARM Microcontroller Development Kit by Keil™
	7.1 Building an existing MDK-ARM project
	Figure 22. MDK-ARM µVision4 IDE environment
	Figure 23. Build Output - MDK-ARM µVision4 project successfully compiled

	7.2 Debugging and running your MDK-ARM project
	Figure 24. Starting a MDK-ARM µVision4 debugging session
	Figure 25. MDK-ARM IDE workspace

	7.3 Creating your first application using the MDK-ARM toolchain
	7.3.1 Managing source files
	Figure 26. Creating a new project
	Figure 27. Device selection dialog box
	Figure 28. Copy the STM32 Startup Code dialog box
	Figure 29. main.c example file
	Figure 30. Adding source files
	Figure 31. New project file tree structure

