ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

r UM1467
YI User manual
Getting started with software and firmware environments

for the STM32F4DISCOVERY Kit

1 Introduction

This document describes the software, firmware environment and development
recommendations required to build an application around the STM32F4DISCOVERY board.

It presents the firmware applications package provided within this board with details on its
architecture and contents. It provides guidelines to novice users on how to build and run a
sample application and allows them to create and build their own application.

This document is structured as follows:

m System requirements to use this board and how to run the built-in demonstration are
provided in Section 2: Getting started.

m Section 3 describes the firmware applications package.

m Section 5 presents development toolchain installation and overview of ST-LINK/V2
interface.

m Section 6, Section 7, Section 8, and Section 9introduce how to use the following software
development toolchains:

— |AR Embedded Workbench® for ARM (EWARM) by IAR Systems
— Microcontroller Development Kit for ARM (MDK-ARM) by Keil™
— TrueSTUDIO® by Atollic

— TASKING VX-toolset for ARM Cortex by Altium

Although this user manual cannot cover all the topics relevant to software development
environments; it demonstrates the first basic steps necessary to get started with the
compilers/debuggers.

Reference documents

m STM32F4DISCOVERY high-performance discovery board data brief
m STM32F4DISCOVERY peripherals firmware examples (AN3983)

m STM32F40x reference manual (RM0090)

m STM32F405xx STM32F407xx datasheet

The above documents are available at www.st.com/stm32f4-discovery.

September 2011 Doc ID 022172 Rev 1 1/46

www.st.com

UM1467 Contents

Contents
1 Introduction i e 1
2 Gettingstartedc. i e 4
2.1 System requirements 4
2.2 Running the built-in demonstration, 5
3 Description of the firmware package 6
3.1 Libraries folder 6
3.1.1 CMSIS subfolder 6
3.1.2 STM32_USB_Device_Library subfolder 7
3.1.3 STM32_USB_HOST_Library subfolder 7
3.1.4 STM32_USB_OTG_Driversubfolder 7
3.1.5 STM32F4xx_StdPeriph_Driver subfolder 7
3.2 Project folder 7
3.2.1 Demonstration subfolder 7
3.2.2 Master_Workspace subfolder 8
3.23 Peripheral_Examples subfolder 8
3.3 Utilities folder 8
4 Binary images for reprogramming firmware applications 9
5 ST-LINK/V2 installation and development 10
6 Using IAR Embedded Workbench® for ARM 11
6.1 Building an existing EWARM project 11
6.2 Debugging and running your EWARM project 12
6.3 Creating your first application using the EWARM toolchain 14
6.3.1 Managing sourcefiles 14
6.3.2 Configuring projectoptions 16
7 Using MDK-ARM Microcontroller Development Kit by Keil™ 20
7.1 Building an existing MDK-ARM project 20
7.2 Debugging and running your MDK-ARM project 21
7.3 Creating your first application using the MDK-ARM toolchain 23

IYI Doc ID 022172 Rev 1 2/46

Contents UM1467
7.3.1 Managing sourcefiles 23

7.3.2 Configuring projectoptions i 25

8 Using Atollic TrueSTUDIO®ot iiiiiinnnnnnnnnnnns 28
8.1 Building an existing TrueSTUDIO project 28

8.2 Debugging and running your TrueSTUDIO project 31

8.3 Creating your first application using TrueSTUDIO toolchain 32

9 USINGTASKINGot i it iea e anannrnnnns 36
9.1 Building an existing TASKING project 36

9.2 Debugging and running your TASKING project 40

9.3 Creating your first application using TASKING toolchain 41

10 Revision historyt i i i, 45
3/46 Doc ID 022172 Rev 1 1S7]

UM1467 Getting started

2 Getting started

2.1 System requirements

Before running your application, you should establish the connection with the
STM32F4DISCOVERY board as following.

Figure 1. Hardware environment

To run and develop any firmware applications on your STM32F4DISCOVERY board, the
minimum requirements are as follows:

— Windows PC (2000, XP, Vista, 7)

— 'USB type A to Mini-B' cable, used to power the board (through USB connector
CN?1) from host PC and connect to the embedded ST-LINK/V2 for debugging and
programming

Additional hardware accessories will be needed to run some applications:

— 'USB type A to Micro-B' cable, used to connect the board (through USB connector
CN5) as USB Device to host PC.

— Headphone with male jack connector.

4

Doc ID 022172 Rev 1 4/46

Getting started UM1467

2.2 Running the built-in demonstration

The board comes with the demonstration firmware preloaded in the Flash memory. Follow
the steps below to run it:

— Check jumper position on the board, JP1 on, CN3 on (Discovery selected).

— Connect the STM32F4DISCOVERY board to a PC with a 'USB type A to Mini-B'
cable through USB connector CN1 to power the board. Red LED LD2 (PWR) then
lights up.

— Four LEDs between B1 and B2 are blinking.

— Press User Button B1 then MEMS sensor is enabled, move the board and observe
the four LEDs blinking according to the motion direction and speed.

— If you connect a second 'USB type A to Micro-B' cable between PC and CN5
connector then the board is recognized as standard mouse and its motion will also
control the PC cursor.

5/46 Doc ID 022172 Rev 1 KYI

UM1467

Description of the firmware package

3

3.1

3.1.1

Description of the firmware package

The STM32F4DISCOVERY firmware applications are provided in one single package and
supplied in one single zip file. The extraction of the zip file generates one folder,
STM32F4-Discovery_ FW_VX.Y.Z, which contains the following subfolders:

Figure 2. Hardware environment

+- 3 _htmresc
-4 Libraries
+-{7) CM5I5

=) Project

- Utilities

) STM32F4-Discovery_PW_VXY.Z

+- 3 STM32_USB_Device_Library
+- 7y STM32_USB_HOST_Library

+- 7y STM32_USB_OTG_Driver

+-) STM32F&ee_StdPerph_Driver

+-{3) Demonstration
+-{3) Master_Workspace
+-{5) Peripheral_Examples

+-) STM32F4-Discovery
|&| Release_Notes html

1. VX.Y.Z refer to the package version, ex. V1.0.0

Libraries folder

This folder contains the Hardware Abstraction Layer (HAL) for STM32F4xx Devices.

CMSIS subfolder

This subfolder contains the STM32F4xx and Cortex-M4F CMSIS files.

Cortex-M4F CMSIS files consist of:

— Core Peripheral Access Layer: contains name definitions, address definitions and
helper functions to access Cortex-M4F core registers and peripherals. It defines also
a device independent interface for RTOS Kernels that includes debug channel

definitions.

— CMSIS DSP Software Library: features a suite of common signal processing
functions for use on Cortex-M processor based devices. The library is completely
written in C and is fully CMSIS compliant. High performance is achieved through

maximum use of Cortex-M4F intrinsics.

STM32F4xx CMSIS files consist of:

— stm32f4xx.h: this file contains the definitions of all peripheral registers, bits, and
memory mapping for STM32F4xx devices. The file is the unique include file used in
the application programmer C source code, usually in the main.c.

— system_stm32f4xx.c/.h: This file contains the system clock configuration for
STM32F4xx devices. It exports SystemInit () function which sets up the system

Doc ID 022172 Rev 1

6/46

Description of the firmware package UM1467

3.1.2

3.1.3

3.14

3.1.5

3.2

3.2.1

7/46

clock source, PLL multiplier and divider factors, AHB/APBx prescalers and Flash
settings. This function is called at startup just after reset and before connecting to the
main program. The call is made inside the startup_stm32f4xx.s file.

— startup_stm32f4xx.s: Provides the Cortex-M4F startup code and interrupt vectors for
all STM32F4xx device interrupt handlers.

STM32_USB_Device_Library subfolder

This subfolder contains USB Device Library Core and the class drivers.

The Core folder contains the USB Device library machines as defined by the revision 2.0
Universal Serial Bus Specification.

The Class folder contains all the files relative to the Device class implementation. It is
compliant with the specification of the protocol built in these classes.

STM32_USB_HOST_Library subfolder

This subfolder contains USB Host Library Core and the class drivers.

The Core folder contains the USB Host library machines as defined by the revision 2.0
Universal Serial Bus Specification.

The Class folder contains all the files relative to the Host class implementation. It is
compliant with the specification of the protocol built in these classes.

STM32 USB_OTG_Driver subfolder

This subfolder contains the low level drivers for STM32F4xx USB HS and FS cores. It
provides an hardware abstraction layer, USB communication operations and interfaces used
by the high level Host and Device Libraries to access the core.

STM32F4xx_StdPeriph_Driver subfolder

This subfolder contains sources of STM32F4xx peripheral drivers (excluding USB and
Ethernet).

Each driver consists of a set of routines and data structures covering all peripheral
functionalities. The development of each driver is driven by a common API (application
programming interface) which standardizes the driver structure, the functions and the
parameter names.

Each peripheral has a source code file, stm32f4xx_ppp.c, and a header file,
stm32f4xx_ppp.h. The stm32f4xx_ppp.c file contains all the firmware functions required to
use the PPP peripheral.

Project folder
This folder contains the source files of the STM32F4DISCOVERY firmware applications.

Demonstration subfolder

This subfolder contains the demonstration source files with preconfigured project for
EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains.

Doc ID 022172 Rev 1 KYI

UM1467

Description of the firmware package

3.2.2

3.2.3

3.3

A binary images (*.hex and *.dfu) of this demonstration is provided under Binary subfolder.
You can use the STM32F4xx’s embedded Bootloader or any in-system programming tool to
reprogram the demonstration using this binary image.

Master_Workspace subfolder

This subfolder contains, for some toolchains, a multi-project workspace allowing you to
manage all the available projects (provided under the subfolders listed below) from a single
workspace window.

Peripheral_Examples subfolder

This subfolder contains a set of examples for some peripherals with preconfigured projects
for EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains. See Section 5 and
STM32F4DISCOVERY peripheral firmware examples, AN3983, for further details.

Utilities folder

This folder contains the abstraction layer for the STM32F4DISCOVERY hardware. It
provides the following drivers:

— stm32f4_discovery.c: provides functions to manage the user push button and 4 LEDs
(LD3.LD®6)

— stm32f4_discovery_audio_codec.c/.h: provides functions to manage the audio DAC
(CS43L22)

— stm32f4_discovery_lis302dl.c/.h: provides functions to manage the MEMS
accelerometer (LIS302DL).

Doc ID 022172 Rev 1 8/46

Binary images for reprogramming firmware applications UM1467

4 Binary images for reprogramming firmware
applications

This section describes how to use the provided binary images to reprogram the firmware
applications. The STM32F4DISCOVERY firmware package contains binary images (*.hex
and *.dfu) of the provided applications which allow to use the STM32F4xx's embedded
Bootloader or any in-system programming tool to reprogram these applications easily.

Below are the steps to follow:
® Using “in-system programming tool”

Connect the STM32F4DISCOVERY board to a PC with a 'USB type A to Mini-B'
cable through USB connector CN1 to power the board.

Make sure that the embedded ST-LINK/V2 is configured for in-system
programming (both CN3 jumpers ON).

Use *.hex binary (for example,
\Project\Demonstration\Binary\STM32F4-Discovery_Demonstration_V1.0.0.hex)
with your preferred in-system programming tool to reprogram the demonstration
firmware (ex. STM32 ST-LINK Ultility, available for download from www.st.com).

® Using “Bootloader (USB FS Device in DFU mode)”

9/46

Configure the STM32F4DISCOVERY board to boot from “System Memory” (boot
pins BOOTO0:1 /BOQOT1:0)

Set BOOTO pin to high level: on the male header P2 place a jumper between
BOOTO pin and VDD pin

Set BOOT1(PB2) pin to low level: on the male header P1 place a jumper between
PB2 pin and GND pin

Connect a 'USB type A to Mini-B' cable between PC and USB connector CN1 to
power the board.

Connect a 'USB type A to Micro-B' cable between PC and USB connector CN5,
the board will be detected as USB device.

Use *.dfu binary (for example,
\Project\Demonstration\Binary\STM32F4-Discovery_Demonstration_V1.0.0.dfu)
with “DFUse\DFUse Demonstration” tool (available for download from
www.st.com) to reprogram the demonstration firmware.

Doc ID 022172 Rev 1 KYI

UM1467

ST-LINK/V2 installation and development

5

Note:

ST-LINK/V2 installation and development

STM32F4DISCOVERY board includes an ST-LINK/V2 embedded debug tool interface that
is supported by the following software toolchains:

IAR™ Embedded Workbench for ARM (EWARM) available from www.iar.com
The toolchain is installed by default in the C:\Program Files\|IAR Systems\Embedded
Workbench 6.2 directory on the PC’s local hard disk.

After installing EWARM, install the ST-LINK/V2 driver by running the
ST-Link_V2_USB.exe from [IAR_INSTALL_DIRECTORY]\Embedded Workbench
6.2\arm\drivers\ST-Link \ST-Link_V2_USBdriver.exe

RealView Microcontroller Development Kit (MDK-ARM) toolchain available from
www.keil.com

The toolchain is installed by default in the C:\Keil directory on the PC’s local hard disk;
the installer creates a start menu pVision4 shortcut.

When connecting the ST-LINK/V2 tool, the PC detects new hardware and asks to install
the ST-LINK_V2_USB driver. The “Found New Hardware wizard” appears and guides
you through the steps needed to install the driver from the recommended location.
Atollic TrueSTUDIO® STM32 available from www.atollic.com

The toolchain is installed by default in the C:\Program Files\Atollic directory on the PC’s
local hard disk.

The ST-Link_V2_USB.exe is installed automatically when installing the software
toolchain.

Altium™ TASKING VX-toolset for ARM® Cortex-M available from www.tasking.com
The toolchain is installed by default in the “C:\Program Files\TASKING directory on the

PC’s local hard disk. The ST-Link_V2_USB.exe is installed automatically when
installing the software toolchain.

The embedded ST-LINK/V2 supports only SWD interface for STM32 devices.

Refer to the firmware package release notes for the version of the supporting development
toolchains.

Doc ID 022172 Rev 1 10/46

Using IAR Embedded Workbench® for ARM UM1467

6

6.1

11/46

Using IAR Embedded Workbench® for ARM

Building an existing EWARM project

The following is the procedure for building an existing EWARM project.
1. Open the IAR Embedded Workbench® for ARM (EWARM).

Figure 3 shows the basic names of the windows referred to in this document.
Figure 3. I1AR Embedded Workbench IDE (Integrated Design Environment)

D& L |

Files Window
[

Workspace Window
[+

Messages

Build Window

|

IReadv

2. Inthe File menu, select Open and click Workspace to display the Open Workspace
dialog box. Browse to select the demonstration workspace file and click Open to launch
it in the Project window.

3. Inthe Project menu, select Rebuild All to compile your project.

Doc ID 022172 Rev 1 IYI

UM1467 Using IAR Embedded Workbench® for ARM

4. If your project is successfully compiled, the following window in Figure 4 is displayed.
Figure 4. EWARM project successfully compiled

x

hMessages File 25

Errars: none
YWarnings: none

Link tirne: 0.05 (CPU) 0.03
(elapsed)

Total number of errors: 0
= Taotal number of warnings: 0
= W

Ready

6.2 Debugging and running your EWARM project

In the IAR Embedded Workbench IDE, from the Project menu, select Download and
Debug or, alternatively, click the Download and Debug button the in toolbar, to program the
Flash memory and begin debugging.

Figure 5. Download and Debug button

T A
e
T X

ﬁDownload and Debug

The debugger in the IAR Embedded Workbench can be used to debug source code at C
and assembly levels, set breakpoints, monitor individual variables and watch events during
the code execution.

IYI Doc ID 022172 Rev 1 12/46

Using IAR Embedded Workbench® for ARM

UM1467

13/46

Figure 6.

IAR Embedded Workbench debugger screen

1AR Embedded Workbench IDE

Fie Edt View Project Debug Disassembly STAME Took Window Help

STMAF4-Discovesy Dema

94 /% Initialize LEDs and '8

o) i 5 e

Do & B P _oamma e e RGN
S| 8 BLLRDE
0
Woksme x v
| Dema v 67 * @param None =tk
| Files £z ER oA :: :5’1"9*"‘1 HNone Disassembly
B STM32F4-Dis_. v £ 0800232
| -m LI EwWARM :,i”l‘“ Rsluiein) 1z8002326
| FECISTMIZ_USBE i ysTick—: VAl
| - = == 72 RCC_ClocksTypeDeaf BCC C.
| FEISTMIZ_USE_. I T = x80023ca
m ﬂf”'rl;l‘)q:.f i b uxsuuzam

TS e
« | x
4 Cupient CPU Registers: w
a| [R0 = oxoo000000
0 Rl = 0x08005ECC
i R2 = 008006283
R3 = 0x2000017C
R4 = 0x00000000
a RS = 0x00000000
0% || R6 = Ox00000000
> < >

Messagas

Updeting build tree

Building configuration: STHMIZF4Discovery_Dema - Demo

<
Debuglop Build

Golo

w | | Memany

e =]

00oooonon 20000c63
onononio 08005731
goaoao20 ao00oood
00ooon30 08005739
00000040 04005££5
onooons0 0800&005
0oanons0 08006015
00000070 0800s025
00ononan 03006035
onaoonan. 08006045
000000a0 08006055
000000L0 08006065

08005acd
08005733
qaagooog
gooooooo
0800519
0aons009
080060149
08006029
03006039
08006049
0a006059
03006069

08005724 0200572f
8005735 00000000
00000000 08005737
0800573bL 03005734
08005££d 02006001
180058ed 08006011
08006014 08002akb
0800602d 03006031
08006034 03006041
0800604d 08006051
08006054 0BO060AT
0800e06d 03006071

Efrees 0, Wamings 0

HUM

|||'l-

To run your application, from the Debug menu, select Go. Alternatively, click the Go button
in the toolbar to run your application.

Figure 7.

Go button

Doc ID 022172 Rev 1

4

UM1467 Using IAR Embedded Workbench® for ARM

6.3 Creating your first application using the EWARM toolchain
6.3.1 Managing source files

Follow these steps to manage source files.
1. In the Project menu, select Create New Project and click OK to save your settings.
Figure 8. Create New Project dialog box

Create New Project E|

Toal chain: |AF!M “ |

Project templates:

Emply project
asm
C++
C
DLE
Erternally built executable

Description:

Creates an empty project.

OF. l ’ Cancel]

2. Name the project (for example, NewProject.ewp) and click Save to display the IDE
interface.

Figure 9. IDE interface

#% IAR Embedded Workbench DE (= |[B[X]

File Edit ‘iew Project Simulator Tools Window
Help

D@
pacs

[ebug

Files e
INewProje... +

HewProject

|

Messages
Configquration is up-to-date.

(=0 |

[~
|~
x| <

To create a new source file, in the File menu, open New and select File to open an empty
editor window where you can enter your source code.

IYI Doc ID 022172 Rev 1 14/46

Using IAR Embedded Workbench® for ARM UM1467

15/46

The IAR Embedded Workbench enables C color syntax highlighting when you save your file
using the dialog File > Save As... under a filename with the *.c extension. In Figure 10:
main.c example file, the file is saved as main.c.

Figure 10. main.c example file

(man.c I i
int main{wroid) f
i
return(0);
1
-
O >

Once you have created your source file you can add this file to your project, by opening the

Project menu, selecting Add and adding the selected file as in Figure 11: Adding files to a
project.

Figure 11. Adding files to a project

% 1AR Embedded Workbench IDE =3
File Edit Wiew Project Simulator Tools Window Help
=== :
‘Warkspace I | v
|Debug "| int main (vodid) f
Files el =t o
—_ return
BE Options...
Take }
Rebuild all
Clean
pies..
N add "main.c”
EMOE add Group...
I_ v
MEWRI Source Code Control b [Fof(C] € b4
Addthe sl Fie properties...

If the file is added successfully, Figure 12: New project file tree structure is displayed.
Figure 12. New project file tree structure

Files fn| B
Efslnewproj- | v | |
main.c *

Doc ID 022172 Rev 1 I‘!I

UM1467

Using IAR Embedded Workbench® for ARM

6.3.2 Configuring project options

Follow these steps to configure project options.

1. Inthe Project Editor, right-click on the project name and select Options... to display the
Options dialog box as in Figure 13.

Figure 13. Configuring project options

Files i o

Rebuild Al
Clean

2. Inthe Options dialog box, select the General Options category, open the Target tab
and select Device - ST -STM32F4xx.

Figure 14. General options > Target tab

Categon:

I+ Compiler
Mssemiler
Cutput Converter
Custom Buikd
EBuild Actiores
Linker
Carbunger
Simulakor
Anged
GOE Server
AR ACM-monkor
JeLinky1-Trace
T1 Stedlaris FTOL
Macraigor
PE micro
ol
ST-LIME
Third-Farty Drever
T1AD5100

Options for node "STM32F 4 -Discovery_Demo’

Targel | Output | Libsary Conligueation | Libeery Options | MISRA-C:200 € *

I" macsssal vamant

F

) Coue

(%) Device |57 STM32Fdunx .

Honea

Actel
Endian mode FFU AnslogDevices
Almed
Clesus
Energyffionn
Epson
Faraday
Freescae
Fugicsu
Hilscher

| Mioae

Irkal

Marvell

Meronas
KNetSiican
Hirotan

NP

Kl
ONSeEmiconduchor
Samsurg

Sode

g

=
g
T

5T STMZ2F105xC
5T STM3ZF107 =8
ST STMA2FI0TC
ST STM32F1 Docxd
5T STM32F10ux5
5T STMZ2F10=x8
ST STMERF10nB
5T STM32F] Dl
5T STM32F10wxD
5T STM32FL0mxE
5T STMI2F10ueF
ST STM32F1 Dens
5T STM32F205rx
3T STM3ZFZ05vs
ST STMI2F205z:
ST STMIF207 e
3T STM32F215rx
5T STM32F215z2x
5T STM3ZF21 T

5T STM32L151 28
ST STM3ELISLE
5T STM32L152:8
5T STM32L1 5258
ST STM32wW 108
5T STRFID

ST STRTLL

5T STRT12

5T STRV15

5T STR730

5T 5TRT31

5T STRTIS

ST STR736

5T STR¥S0D

ST 5TRYSI

5T STRTS2

ST STR7SS

ST STROIOF

Doc ID 022172 Rev 1

16/46

Using IAR Embedded Workbench® for ARM UM1467

3. Select the Linker category, open the Config tab, in the Linker configuration file pane
select Override default and click Edit to display the Linker configuration file editor.

Figure 15. Linker > Config tab

Assembler

Oukput Corverter
Custom Build
Build At

Library Input | Output | List #define | Diagnostics

Linker configuration file
[] Overide default

Debugger
Simulatar

4. Inthe Linker configuration file editor dialog box, open the Vector Table tab and set
the .intvec.start variable to 0x08000000.

Figure 16. Linker configuration file editor dialog box > Vector Table tab

Linker configuration file editor

Vector Table) Memory Regions | StackfHeap Sizes

.inkvec start 005000000

I Save H Cancel]

5. Open the Memory Regions tab, and enter the variables as shown in Figure 17.
Figure 17. Linker configuration file editor dialog box > Memory Regions tab

Linker configuration file editor
Vactor Table Memary Regions StackfHeap Sizes

Start: End:
R I IE000000 Iw080FFFFF

RAM D 20000000 e 20020000

6. Click Save to save the linker settings automatically in the Project directory.

17/46 Doc ID 022172 Rev 1 I‘!I

UM1467

Using IAR Embedded Workbench® for ARM

7. If your source files include header files, select the C/C++ Compiler category, open the
Preprocessor tab, and specify their paths as shown in Figure 18. The path of the
include directory is a relative path, and always starts with the project directory location

referenced by $PROJ_DIR$

Figure 18. C/C++ Compiler > Preprocessor tab

CJC++ Compiler
Azzembler
Cutput Converter
Custom Build
Build Actions
Lirker
Debugger

Sirmulator

angel

GDE Server

14R RCM-maonitar

Language | Code

[Jlgnare standard include directaries

Additional include directories: [one per ling]

FFROJ_DIREY. Sinc

Optirizations | Output | List

Freprocessor W0 4 4

STOOLKIT_DIREMNCY

8. To set up the ST-Link embedded debug tool interface, select the Debugger category,
open the Setup tab and from the drop-down Driver menu, select ST-Link as shown in

Figure 19.

Figure 19. Debugger > Setup tab

Assembler
oukput Converter
Custom Build
Build Actions
Linker

Debugger
Simulator

angel
GDE Server

Setup | Download | Images | Extra Optionz | Plugins

Driver

ST-Link

[#]Runto

main

Setup macros
[Use macmo file(s)

9. Open the Debugger tab and select Use flash loader(s) as shown in Figure 20.

Figure 20. Select Flash loaders

Cukput Converker
Custam Build
Build Actions

i

angel
GDE Server

Setup | Download | Images | Extra Options | Plugins

[&sttach to program

[Werify download
[Suppress download

{#1 Uze flash loaderz[>

[Orverride default .board file

Doc ID 022172 Rev 1

18/46

Using IAR Embedded Workbench® for ARM UM1467

19/46

10. Select the ST-Link category, open the ST-Link tab and select SWD as the connection

protocol as shown in Figure 21.

Figure 21. ST-Link communication protocol

Assembler
Qukput Converter ST-Link
Custom Build
Build Actions
Linker

Debugger
Simulator O JTAG

angel @
GDE Server

TR ROM-monikar
J-Link{1-Trace
LMI FTDI

Macraigar
ROIL

TElrg—Ear!y griver

Interface

11.
12.

13.

14.

Click OK to save the project settings.

To build your project, follow the instructions given in Section 6.1: Building an existing
EWARM project on page 11.

Before running your application, establish the connection with the
STM32F4DISCOVERY board as described in Section 2: Getting started.

To program the Flash memory and begin debugging, follow the instructions given in
Section 6.2: Debugging and running your EWARM project on page 12.

Doc ID 022172 Rev 1 [‘II

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

7 Using MDK-ARM Microcontroller Development Kit by
Keil™

7.1 Building an existing MDK-ARM project

J

Follow these steps to build an existing MDK-ARM project.

1. Open the MDK-ARM pVision4 IDE, debugger, and simulation environment.
Figure 22: MDK-ARM uVision4 IDE environment shows the basic names of the

windows referred to in this section.

Figure 22. MDK-ARM pVision4 IDE environment

AEH)|

Eile Edit Wew Project Flash Debug Peripherals Tools 3SYCS Window Help

A=A N - NEEEY .Y o W O Rl O R)|

-l L)

i g L e

Froject v ax

Files Window

O

Project Window

) S5p

OQutput Window

e

Find in Files iy

o

E=lBuild output Imﬁnd in Files

2. Inthe Project menu, select Open Project... to display the Select Project File dialog
box. Browse to select the STM32F4-Discovery.uvproj project file and click Open to

launch it in the Project window.

3. Inthe Project menu, select Rebuild all target files to compile your project.

Doc ID 022172 Rev 1

20/46

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

4. If your project is successfully compiled, the following Build Output window (Figure 23:
Build Output - MDK-ARM pVision4 project successfully compiled) is displayed.

Figure 23. Build Output - MDK-ARM pVision4 project successfully compiled

|compiling SCmMIZL9 discoverv.C...

Etnmplllnq BEMIZLANN ECC.C...

lcomplling misc.c...

;Dnmﬂlliﬂﬁ stm3zfdxx gplo.c...

;cnmpilinq SCMIZL9xE aYaCLg.Cu. .

Etnmpllinq sEm3ZLdxx extl.c...

(1inkE1tHg. a

|Progeram Size: Code=1388 BRO-daca=450 BW-data=3§ IZI-data=10ZB
;”.HETH32F4—Biscuve:v_DemcHET£3254—3iscc?ezv_iemc.&xt“ =0 Error(=s]}, 0 Warningi(s}.

7.2 Debugging and running your MDK-ARM project

In the MDK-ARM pVision4 IDE, click the magnifying glass to program the Flash memory
and begin debugging as shown below in Figure 24.

Figure 24. Starting a MDK-ARM pVision4 debugging session
@00 aE

@} start/Stop Debug Session (Ctrl+F5) |
. Enter or leave a debug session

21/46 Doc ID 022172 Rev 1 I‘!I

UM1467

Using MDK-ARM Microcontroller Development Kit by Keil™

The debugger in the MDK-ARM IDE can be used to debug source code at C and assembly
levels, set breakpoints, monitor individual variables and watch events during the code
execution as shown below in Figure 25.

Figure 25. MDK-ARM IDE workspace

DISCOVERSSViciona:

File Edit ‘iew

ERER

Project

Flash Debug

@00 0 5> | O BEEla]

window Help

Tools

Peripherals Extension & Extension B WS

Memory 1

Regi;ters + I x.
Riegister 1Value I ST A
CUBRE SEi /% Enable PUR and GPIOx Clocks */
o:0x08000455 B570 PUEH {rd-re6, 1r}
595 RCC_APEl1PeriphClockCmd (RCC_LPE1Periph PWR, ENAELE):
Dﬂmdmmﬂﬂ Ox05000454 2101 HMOWS ri,#0x01
F 000 Ox0500045C 0705 L3L3 ro,rl, #2858
0x0300043E FYFFFEE1 EBL.W RCC_APEl1PeriphClockCmd (0x08000
60 RCC_APEl1PeriphClockCmd (RCC_LPEZPeriph GPIOC, ENLBLEEﬁ
o " eng MNwnROnnaa? 21n1 MOnTS +1 #Hwnid — ']
(0x00000000 il B
R7 (0x00000000 == — =
R& (0x00000000 | main.c - X
R3 000000000 051 | # Description ;P Main program. 5
R10 (0x00000000 052 | * Taput .
R11 (0x00000000 053 | * output .
R12 £-00000000 054 | * Return r None =
H13[] DH2DDDD438 055 et R R R R i R RS R]
Hﬂﬁ-ﬁ] | 001 056 dint main(void)
% 3 o 057 4
- R i 058 A% Enable PWR and GPI0x Clocks *=/
Internal 053 RCC_APE1PeriphClockCmd (RCC_APE1Periph PWR, ENABLE):

.I {g=ia]
- = Registers 1K
Address: |0x20000000

OxZ20000000: 00000000 Q0000000 00000000 00000000 00000000 016E3600 00000000 Q0000000
OxZ0000020: 04030201 090350706 40010800 40011000 40011000 00000000 00000000 Q0000000
Oxz0000040: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Oxz200000e0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
O0x20000080: 00000000 Q0000000 00000000 00000000 00000000 00000000 00000000 Q0000000
O0xZ0000040: 00000000 QOOD0000 00000000 00000000 00000000 00000000 00000000 Q0000000
Oxz200000C0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Ox200000EQ: 0O000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 Eﬂ

Tr™ ADRADardwh 1 anlewd (D0 ADR?Davink ADTAC FRTART T -

B

4
=

B3|
|@MEB!X

Gcall Stack | FlLocals | [watch 1

Memory 1 |;_[E5ymbols |

ST-Link Debugger

Doc ID 022172 Rev 1 22/46

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

7.3 Creating your first application using the MDK-ARM toolchain

7.3.1 Managing source files

Follow these steps to manage source files.

1. Inthe Project menu, select New pVision Project... to display the Create Project File
dialog box. Name the new project and click Save.

Figure 26. Creating a new project

Project | Flash Debug Peripherals

Mew piision Project. .

Mew Multi-Project Workspace, ..
Open Projeck, .,

Export 3

Manage »

2. When a new project is saved, the IDE displays the Device selection dialog box. Select
the device used for testing. In this example, we will use the STMicroelectronics device
mounted on the STM32F4DISCOVERY board. In this case, double-click on
STMicroelectronics, select the STM32F407VGT6 device and click OK to save your
settings.

Figure 27. Device selection dialog box

Wendar 5TMicroelectronics
Device: STM3IZF407VGETE
Toolzet: AR

= @ STHicroelectronics " Core: &R 32-bit Cortes.-M4 CPU with
| Adaptive realtime [ART] acceleratar allawing

3. Click Yes to copy the STM32 Startup Code to the project folder and add the file to the
project as shown in Figure 28.

Figure 28. Copy the STM32 Startup Code dialog box

[VaBIoN
. ?‘/1 Copy STM32 Startup Code to Project Folder and Add File to Project ?

fi= B |

Note: The default STM32 startup file includes the Systemlinit function. You can either comment out
this file to not use it or add the system_stm32f4xx.c file from the STM32f4xx firmware
library.

23/46 Doc ID 022172 Rev 1 KYI

UM1467

Using MDK-ARM Microcontroller Development Kit by Keil™

To create a new source file, in the File menu, select New to open an empty editor window
where you can enter your source code.

The MDK-ARM toolchain enables C color syntax highlighting when you save your file using
the dialog File > Save As... under a filename with the *.c extension. In this example
(Figure 29), the file is saved as main.c.

Figure 29. main.c example file

- D main.c

1

2

3 int wain (void)
4=

5 L return (0] ;
B =}

MDK-ARM offers several ways to add source files to a project. For example, you can select
the file group in the Project Window > Files page and right-click to open a contextual
menu. Select the Add Files... option, and browse to select the main.c file previously
created.

Figure 30. Adding source files

= ﬁ Target 1
SR

,ﬁ\ Options For Group 'Source Group 1, Alk+F7

] Rebuild all target Files

Build karget F?

add Group. ..
Add Files to Group "Source Group 1°...

Remaove Group 'Source Group 1' and its Files

ﬁ Manage Components. ..

+ | Show Include File Dependencies

If the file is added successfully, the following window is displayed.
Figure 31. New project file tree structure

[
= &4 Source Group |
| %] startup_stm32fdxx
|£] main.c

Doc ID 022172 Rev 1 24/46

Using MDK-ARM Microcontroller Development Kit by Keil™

UM1467

7.3.2

25/46

Configuring project options

1. In the Project menu, select Options for Target 1 to display the Target Options dialog

box.

2. Open the Target tab and enter IROM1 and IARM1 start and size settings as shown in

Figure 32.

Figure 32. Target Options dialog box - Target tab

r_i_:_! 'i-'y!:'_z.u.: (Erelar é,':['.'f;':.r';-:!j' ﬂ!
| Deviee Taget | Quiput | Listing | User | CACH | msm | Linker | Debug | Uriies |
| STMicioslectionics STMI2L1520B
= Cosde Gereralion
el (Mg} [BD
Diperating spstem: [Mone =] | [UseCooseModie Oplimzation
&TF Uss MierallE = r
Ae=ad/Drly Memosy fiess Read/wiibe Memaly Sreas
| deiaut off-chip Start Size Statup | | defauk ofi-chip Stad Size Mok
~ ROMI: | r r Ramn | E
T ROMZ | r r Ramz | | E:
r RoMa [r AaMa [| "
o —rehip : ___onechip
(v (PoM1) {TB000000 (B0) e
. o = o - i
 TROMZ | r ™ mamz | | |
|
|
ot | cmcel | Defmas | Help

and select the SWD protocol. Click OK to save the ST-Link setup settings.

4. Select Run to main().

Doc ID 022172 Rev 1

3. Open the Debug tab, click Use and select the ST-Link Debugger. Then, click Settings

	Contact us
	1 Introduction
	2 Getting started
	2.1 System requirements
	Figure 1. Hardware environment

	2.2 Running the built-in demonstration

	3 Description of the firmware package
	Figure 2. Hardware environment
	3.1 Libraries folder
	3.1.1 CMSIS subfolder
	3.1.2 STM32_USB_Device_Library subfolder
	3.1.3 STM32_USB_HOST_Library subfolder
	3.1.4 STM32_USB_OTG_Driver subfolder
	3.1.5 STM32F4xx_StdPeriph_Driver subfolder

	3.2 Project folder
	3.2.1 Demonstration subfolder
	3.2.2 Master_Workspace subfolder
	3.2.3 Peripheral_Examples subfolder

	3.3 Utilities folder

	4 Binary images for reprogramming firmware applications
	5 ST-LINK/V2 installation and development
	6 Using IAR Embedded Workbench® for ARM
	6.1 Building an existing EWARM project
	Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)
	Figure 4. EWARM project successfully compiled

	6.2 Debugging and running your EWARM project
	Figure 5. Download and Debug button
	Figure 6. IAR Embedded Workbench debugger screen
	Figure 7. Go button

	6.3 Creating your first application using the EWARM toolchain
	6.3.1 Managing source files
	Figure 8. Create New Project dialog box
	Figure 9. IDE interface
	Figure 10. main.c example file
	Figure 11. Adding files to a project
	Figure 12. New project file tree structure

	6.3.2 Configuring project options
	Figure 13. Configuring project options
	Figure 14. General options > Target tab
	Figure 15. Linker > Config tab
	Figure 16. Linker configuration file editor dialog box > Vector Table tab
	Figure 17. Linker configuration file editor dialog box > Memory Regions tab
	Figure 18. C/C++ Compiler > Preprocessor tab
	Figure 19. Debugger > Setup tab
	Figure 20. Select Flash loaders
	Figure 21. ST-Link communication protocol

	7 Using MDK-ARM Microcontroller Development Kit by Keil™
	7.1 Building an existing MDK-ARM project
	Figure 22. MDK-ARM µVision4 IDE environment
	Figure 23. Build Output - MDK-ARM µVision4 project successfully compiled

	7.2 Debugging and running your MDK-ARM project
	Figure 24. Starting a MDK-ARM µVision4 debugging session
	Figure 25. MDK-ARM IDE workspace

	7.3 Creating your first application using the MDK-ARM toolchain
	7.3.1 Managing source files
	Figure 26. Creating a new project
	Figure 27. Device selection dialog box
	Figure 28. Copy the STM32 Startup Code dialog box
	Figure 29. main.c example file
	Figure 30. Adding source files
	Figure 31. New project file tree structure

