

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

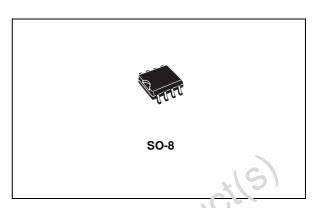
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

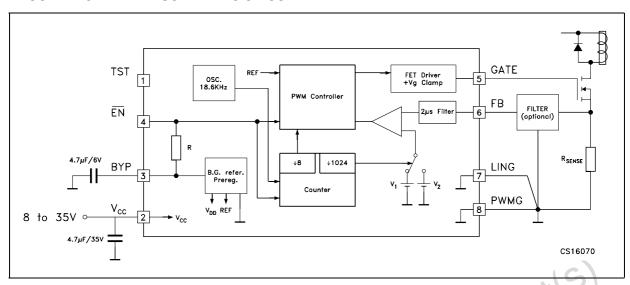


SOLENOID CONTROLLER IC

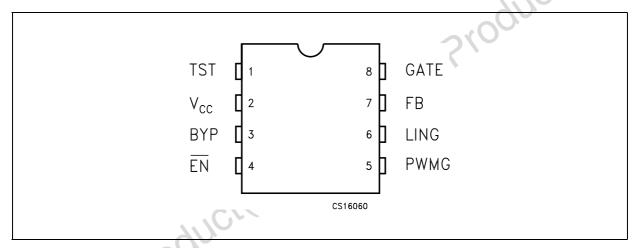
- WIDE SUPPLY VOLTAGE RANGE: 8 TO 35V DC
- BUILD-IN GATE DRIVE VOLTAGE CLAMP TYP. 11V
- LOGIC CONTROLLED ENABLING CIRCUIT
- DIGITAL IN-RUSH TIMER
- BUILT-IN POWER-ON RESET
- INTERNALLY TRIMMED TIMING OSCILLATOR
- NO EXTERNALLY TIMING CAPACITORS NEEDED
- FIXED IN-RUSH/HOLD CURRENT RATIO
- LOW DROP CURRENT SENSING RESISTOR
- INTEGRATED FILTER IN THE FEEDBACK LOOP (TIME COSTANT OF 2µs TYP.)
- SO-8 PACKAGE

DESCRIPTION

This circuit is basically switch mode current regulator with 2 modes (In-rush and Holding). In-rush current occurs in the first 64 ms of each


on/off cycle with the rise time dependent on the coil's resistance and inductance. The Hold-current is a partition of the Intrisi current fixed by the ratio between V_1 and V_2 . A control pin is provided for enabling and disabling the gate control output for the external nower MOS. The MOS transistor must be chosen according to the supply voltage range and the current flowing through the social disable.

ORDERING CODES


	Туре	Temperature Range	Package	Comments					
	STM802BD	-40 to 85 °C	SO-8 (Tube)	100 parts per tube / 20 parts per box					
	STM802BDR	-40 to (5 °C	SO-8 (Tape & Reel)	2500 parts per reel					
0	osoleit								

October 2003 1/8

BLOCK DIAGRAM AND SCHEMATIC CIRCUIT

PIN CONFIGURATION

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION		
(1)	TST (Note 1)	Test Input		
2	V _{CC}	Supply Voltage		
3	BYP	Bypass capacitor		
4	EN	Enable Input		
5	PWMG	Switch Ground		
6	LING	Linear Ground		
7	FB	FeedBack		
8	GATE	Gate Control Output		

Note 1: The TST pin is for testing purpose only. Must be left FLOATING for normal operation.

TRUTH TABLES FOR ENABLE PIN

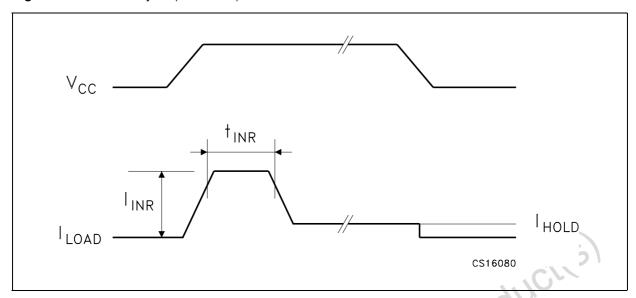
EN	DEVICE
LOW	ENABLED
HIGH	DISABLED
FLOAT	DISABLED

Note 1: The TST pin is for testing purpose only. Must be left FLOATING for normal operation.

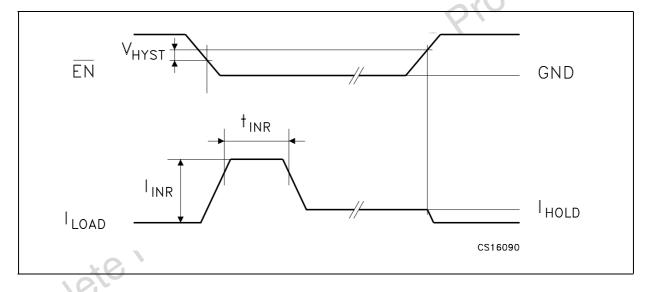
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to 40	V
VI	DC Input Voltage of EN, FB	-0.5 to 7	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	-20/+5	mA
P _D	Maximum Power Dissipation	500	mW
T _L	Lead Temperature (10sec)	300	°C
T _{STG}	Storage Temperature Range	-65 to 150) °C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.


ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING CONDITIONS

(Unless otherwise noted. Typical values are at $T_A = 25$ °C)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operative Supply Voltage Range	DC only	8		35	V
V _{IL}	Low Level Input Thresholds of Enable	20/2	0		0.8	V
V _{IH}	High Level Input Thresholds of Enable	2/02	2		5	V
V _{HYST}	Hysteresis of Enable Input	()		0.3		V
I _{IN}	Input Leakage Current of Enable	EN = GND	-100	-60	-30	μΑ
		$\overline{\text{EN}}$ = 5.5V, V_{CC} = 0 to 35V		0.1	1	μΑ
ΙQ	Quiescent Supply Current	$\overline{\sf EN}$ = 5.5V, V _{CC} = 9V, V _{FB} = 0V		0.4	0.9	mA
I _{CC}	Supply Current	$\overline{\text{EN}} = \text{GND}, V_{\text{CC}} = 9V, V_{\text{FB}} = 0V$		0.7	1.2	mA
		$C_{LOAD} = 1000pF$				
V_{CLAMP}	Gate drive voltage clamp	V _{CC} > 20V	9	11	13	V
V ₁	Voltage reference for Inrush current		314	345	380	mV
V ₂	Voltage reference for Hold current		70	77	86	mV
I _{INR} /I _{HOLD}	Inrush current to hold current ratio			4.5		
T _{INR}	Time duration of Inrush interval		56	64	72	ms
I _{GH}	Gate control output source current	$V_{G} = 0V, V_{CC} = 13V$		-1.6	-1	mA
I _{GL}	Gate control output sink current	$V_{G} = 8V, V_{CC} = 13V$	2.5	4.5		mA
V _{BYP}	Internal Pre-regulator output voltage	I _{BYP} = 1mA		4		V
T _C	Time constant of feedback filter			2		μs
T _{OP}	Operative Temperature Range		-40		85	°C

TYPICAL CHARACTERISTICS

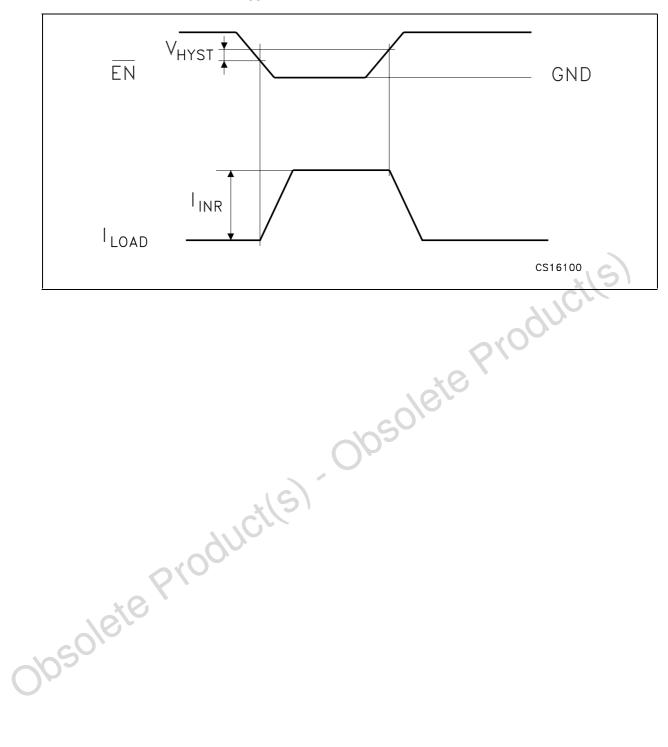

Figure 1 : Power on Cycle ($\overline{EN} = Low$)

Figure 2 : Controlled by Enable $(V_{CC} = ON)$

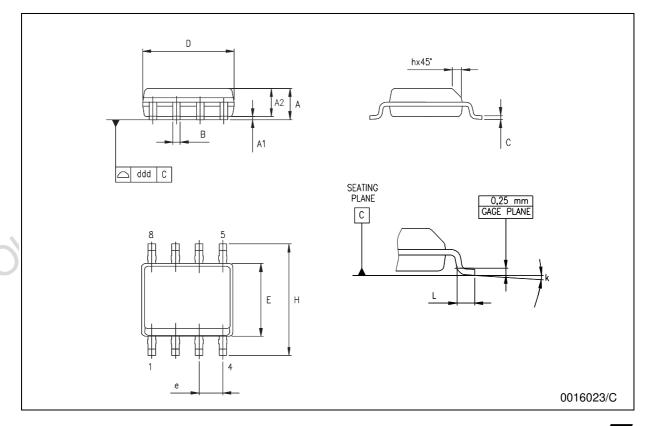
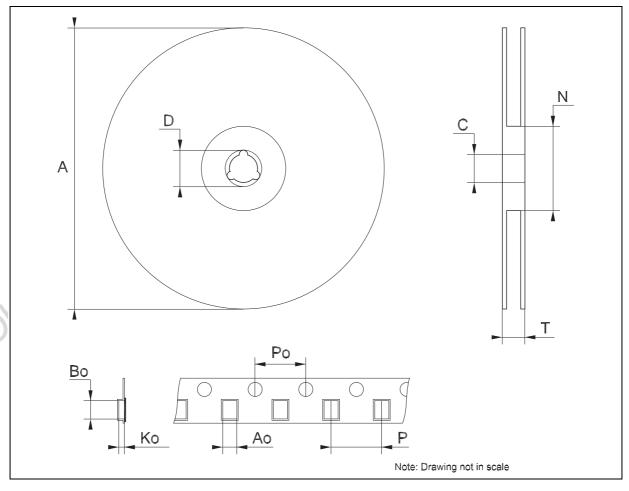


Figure 3 : Controlled by Enable $(V_{CC} = ON)$


SO-8 MECHANICAL DATA

DIM	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k		8° (max.)					
ddd			0.1			0.04	

Tape & Reel SO-8 MECHANICAL DATA

DIII4	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com