imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STMPE801

8-bit port expander Xpander logic

Features

- 8 GPIO
- Operating voltage 1.65V 3.6V
- I/O voltage 1.65V-3.6V
- Interrupt output pin
- Reset input pin
- Wake up feature on each I/O
- Up to 2 devices sharing the same bus (1 address line)
- <1µA suspend current</p>

Application

- Portable media player, Game console
- Mobile phone, Smart phone

Description

The STMPE801 is a GPIO (General Purpose Input / Output) port expander able to interface a main digital ASIC via the two-line bidirectional bus (I^2C); separate GPIO Expander IC is often used in Mobile-Multimedia platforms to solve the problems of the limited amounts of GPIOs usually available on the Digital Engine.

The STMPE801 offers great flexibility as each I/Os is configurable as input, output. This device has been designed very low quiescent current, and includes wake up feature for each I/O, to optimize the power consumption of the IC.

Table 1. Device summary

Order codes	Package	Packaging
STMPE801QTR	QFN16L (2.6mm x 1.8mm)	Tape and reel (3000 per reel)
STMPE801MTR	SO-16	Tape and reel (2500 per reel)

Contents

1	Block diagram				
2	Pin s	settings			
	2.1	Pin connection			
	2.2	Pin assignment			
3	Махі	mum rating			
	3.1	Absolute maximum rating			
	3.2	Thermal data			
4	Elec	trical specification			
	4.1	DC electrical characteristics 8			
5	I2C r	I2C module			
	5.1	I2C address			
	5.2	I2C features			
	5.3	Start condition			
	5.4	Stop condition			
	5.5	Acknowledge bit			
	5.6	Data input			
	5.7	Operation modes			
	5.8	Read operation			
	5.9	Acknowledgement in read operation			
	5.10	Write operations			
	5.11	General call 14			
6	Turn	ing I2C block OFF and ON 14			

7	Regi	ster map	
	7.1	System and identification registers 15	
	7.2	System control register 15	
8	Inter	rupt, power supply & reset16	
	8.1	Interrupt enable GPIO mask register (IEGPIOR)	
	8.2	Interrupt status GPIO register (ISGPIOR)	
	8.3	GPIO controller	
	8.4	Power supply	
	8.5	Reset	
9	Pack	age mechanical data 19	
10	Revision history		

1 Block diagram

2 Pin settings

2.1 Pin connection

Figure 2. Pin connection

2.2 Pin assignment

Table 2. Pin assignment

Pin N°		Namo	Eunction	
SO-16	QFN16L	Name	T unction	
11	1	INT	INT output	
12	2	Reset	Reset Input (Active Low)	
13	3	CLOCK	I ² C Clock	
14	4	Address	I ² C Address	
15	5	DATA	I ² C Data	
16	6	VCC	Supply voltage for I ² C block	
1	7	VIO	Supply voltage for GPO and GPIO Controller (Note: V_{IO} must be $\geq V_{CC}$)	
2	8	GND	GND	
3	9	GPIO_0	GPIO 0	
4	10	GPIO_1	GPIO 1	
5	11	GPIO_2	GPIO 2	
6	12	GPIO_3	GPIO 3	
7	13	GPIO_4	GPIO 4	
8	14	GPIO_5	GPIO 5	
9	15	GPIO_6	GPIO 6	
10	16	GPIO_7	GPIO 7	

3 Maximum rating

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

3.1 Absolute maximum rating

Table 3.	Absolute	maximum	rating
----------	----------	---------	--------

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	4.5	V
V _{IO}	GPO supply voltage	4.5	V
VESD (HBM)	ESD protection on each GPO pin	2	KV

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value			Unit
Symbol	Faiametei	Min	Тур	Мах	Unit
T _A	Operating ambient temperature	-40		+85	°C
T _{STG}	Operating storage temperature	-65		155	°C/W

4 Electrical specification

4.1 DC electrical characteristics

Table 5. DC electrical characteristics

Cumbal	Devemeter Test conditions			l la it		
Symbol	Parameter	lest conditions	Min	Тур	Max	Unit
V _{CC}	Core supply voltage		1.65	-	3.6	V
V _{IO}	IO supplì voltage		1.65	-	3.6	V
lpd	Power down current				1	μA
Icc Max	Operating current (No peripheral activity)	I ² C running at 400KHz 100% traffic density		0.2	0.5	mA
lcc Normal	Operating current (No peripheral activity)	I ² C running at 400KHz 1% traffic density		10	15	μA
I _{CC} Suspend	Operating current (No peripheral activity)	No I ² C activity		0.5	1	μA
V _{IL}	Input voltage low state	V _{IO} = 1.8-3.3V	-0.3V		0.30V _{IO}	V
V _{IH}	Input voltage high state	V _{IO} = 1.8-3.3V	$0.70 V_{IO}$		V _{IO} +0.3V	V
V _{OL}	Output voltage low state	V _{IO} = 1.8-3.3V, I _{OL} =8mA	-0.3V		0.25V _{IO}	V
V _{OH}	Output voltage high state	V _{IO} =1.8-3.3V, I _{OL} =8mA	0.75V _{IO}		V _{IO} +0.3V	V
$V_{OL}(I^2C)$	Output voltage low state	Vcc=1.8-3.3V, I _{OL} =8mA	-0.3V		$0.25V_{CC}$	V
V _{OH} (I ² C)	Output voltage high state	Vcc=1.8-3.3V, I _{OL} =8mA	0.75Vc c		V _{CC} +0.3V	V

5 I²C module

STMPE801 is interface to the main processor using an I2C bus.

5.1 I²C address

Addressing scheme of STMPE801 is designed to allow up to 2 devices to be connected to the same I^2C bus.

Figure 3. Addressing scheme

Table 6. Addresses

ADDR0	Address	Note
0	0x82	
1	0x88	

For the bus master to communicate to the slave device, the bus master must initiate a Start condition anf followed by the slave device address. Accompanying the slave device address, there is a Read/Write bit (R/W). The bit is set to 1 for Read and 0 for write operation.

If a match occurs on the slave device address, the corresponding device gives an acknowledge on the SDA during the 9th bit time. If there is no match, it deselects itself from the bus by not responding to the transaction.

Table 7. I²C address

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency	0		400	kHz
t _{LOW}	Clock low period	1.3			μs
t _{HIGH}	Clock high period	600			ns
t _F	SDA and SCL fall time			300	ns
t _{HD:STA}	START condition hold time (After this period the first clock is generated)	600			ns
t _{SU:STA}	START condition setup time (Only relevant for a repeated start period)	600			ns
t _{SU:DAT}	Data setup time	100			ns
t _{HD:DAT}	Data hold time	0			μs
t _{SU:STO}	STOP condition setup time	600			ns
t _{BUF}	Time the bust must be free before a new trasmission can start	1.3			μS

5.2 I²C features

The features that are supported by the I^2C interface are as below:

- I²C slave device
- Operates at 1.8V
- Compliant to Philips I²C specification version 2.1
- Supports standard (uo to 100Kbps) and fast (up to 400Kbps) modes

5.3 Start condition

A Start condition is identified by a falling edge of SDATA while SCLK is stable at high state. A Start condition must precede any data/command transfer. The device continuously monitors for a Start condition and will not respond to any transaction unless one is encountered.

5.4 Stop condition

A Stop condition is identified by a rising edge of SDATA while SCLK is stable at high state. A Stop condition terminates communication between the slave device and bus master. A read command that is followed by NoAck can be followed by a Stop condition to force the slave device into idle mode. When the slave device is in idle mode, it is ready to receive the next I²C transaction. A Stop condition at the end of a write command stops the write operation to registers.

5.5 Acknowledge bit

The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter releases the SDATA after sending eight bits of data. During the ninth bit, the receiver pulls the SDATA low to acknowledge the receipt of the eight bits of data. The receiver may leave the SDATA in high state if it would to not acknowledge the receipt of the data.

5.6 Data input

The device samples the data input on SDATA on the rising edge of the SCLK. The SDATA signal must be stable during the rising edge of SCLK and the SDATA signal must change only when SCLK is driven low.

57

57

5.7 Operation modes

Table 8. Operation modes

Mode	Bytes	Programming Sequence
		START, Device Address, $R/W = 0$, Register Address to be read
		RESTART, Device Address, $R/W = 1$, Data Read, STOP
Read	≥1	If no STOP is issued, the Data Read can be continuously preformed. If the register address falls within the range that allows address auto- increment, then register address auto-increments internally after every byte of data being read. For register address that falls within a non- incremental address range, the address will be kept static throughout the entire read operations. Refer to the Memory Map table for the address ranges that are auto and non-increment.
Write	≥1	START, Device Address, $R/\overline{W} = 0$, Register Address to be written, Data Write, STOP
		If no STOP is issued, the Data Write can be continuously performed. If the register address falls within the range that allows address auto- increment, then register address auto-increments internally after every byte of data being written in. For register address that falls within a non- incremental address range, the address will be kept static throughout the entire write operations. Refer to the Memory Map table for the address ranges that are auto and non-increment.

Figure 5. Read and write modes (random and sequential)

5.8 Read operation

A write is first performed to load the register address into the Address Counter but without sending a Stop condition. Then, the bus master sends a reStart condition and repeats the Device Address with the R/W bit set to 1. The slave device acknowledges and outputs the content of the addressed byte. If no more data is to be read, the bus master must not acknowledge the byte and terminates the transfer with a Stop condition.

If the bus master acknowledges the data byte, then it can continue to perform the data reading. To terminate the stream of data byte, the bus master must not acknowledge the last output byte and follow by a Stop condition. If the address of the register written into the Address Counter falls within the range of addresses that has the auto-increment function, the data being read will be coming from consecutive addresses, with the internal Address Counter automatically increments after each byte output. After the last memory address, the Address Counter 'rolls-over' and the device continue to output data from the memory address of 0x00. Similarly, for the address of register that falls within non-increment range of addresses, the output data byte comes from the same address (which is the address pointed by the Address Counter).

5.9 Acknowledgement in read operation

For the above read command, the slave device waits, after each byte read, for an acknowledgement during the ninth bit time. If the bus master does not drive the SDA to low state, then the slave device terminates and switches back to its idle mode, waiting for the next command.

5.10 Write operations

A write is first performed to load the register address into the Address Counter without sending a Stop condition. After the bus master receives an acknowledgement from the slave device, it may start to send a data byte to the register (pointed by the Address Counter). The slave device again acknowledges and the bus master terminates the transfer with a Stop condition.

If the bus master would like to continue to write more data, it can just continue write operation without issuing the Stop condition. Whether the Address Counter auto-increments or not after each data byte write, depends on the address of the register written into the Address Counter. After the bus master writes the last data byte and the slave device acknowledges the receipt of the last data, the bus master may terminates the write operation by sending a Stop condition. When the Address Counter reaches the last memory address, it 'rolls-over' on the next data byte write.

57

5.11 General call

A general call address is a transaction with the slave address of 0x00 and R/W = 0. When a general call address is made, the device responds to this transaction with an acknowledgement and behaves as a slave-receiver mode. The meaning of a general call address is defined in the second byte sent by the master-transmitter.

Table 9. General call

R/W	Second Byte Value	Definition
0	0x06	2-byte transaction in which the second byte tells the slave device to reset and write (or latch in) the 1-bit programmable part of the slave address.
0	0x04	2-byte transaction in which the second byte tells the slave device not to reset and write (or latch in) the 1-bit programmable part of the slave address.
0	0x00	Not allowed as second byte.

Note:

All other second byte value will be ignored.

6 Turning I²C block OFF and ON

STMPE801 operates entirely on the l^2C clock. When there are no activity on the l^2C bus, current consumption of the device is extremely low. However, when there are activity on the l^2C bus, current consumption increases, even if the l^2C traffic is not directed to the assigned address.

Host system may choose to shut-down the I²C block in the STMPE801, if no access to the registers are required. This feature allows the current consumption to drop to the minimum. Host system turns OFF the I²C block by writing '1' into the I²C_SHDN bit. The I²C block will shut down on the next valid clock edge of the I²C clock signal. In this state, the device CANNOT be accessed by I²C, as the I²C has shut down completely.

To turn ON the I^2C block, system host must reset the STMPE801 in order to re-activate the I^2C block. This could be done by hardware assertion of the RESET pin.

7 Register map

Table 10. Register map

Address	Register Name	Size (bit)	Function		
0x00	Chip ID	16	0x0801		
0x02	Version ID	8	Revision number		
0x04	SystemControl	8	Reset and interrupt control		
0x08	IEGPIOR	8	GPIO interrupt enable register		
0x09	ISGPIOR	8	GPIO interrupt status register		
0x10	GPMR	8	GPIO monitor pin state register		
0x11	GPSR	8	GPIO set pin state register		
0x12	GPDR	8	GPIO set pin direction register		

7.1 System and identification registers

Table 11. System and identification registers

Register name	Size (bit)	Function
Chip ID	16	0x0801
Version ID	8	Revision number: 0x01 (Engineering) 0x02 (Final silicon)
Systemcontrol	8	

7.2 System control register

Table 12. System control register

Bit	Reset	Name	Description		
7	0	SoftReset	Writing '1' to this bit causes a soft reset		
6	0	I2C_SHDN	Writing '1' to this bit shuts down the I2C blo on the next valid I2C clock.		
5	0				
4	0				
3	0				
2	0	INT_Enable	'1' to enable, '0' to disable INT output		
1	0				
0	0	INTPolarity	'1' for active HI, '0' for active LOW		

8 Interrupt, power supply & reset

STMPE801 could be configured to generate an interrupt when there is a logic transition of any of the GPIO configured as input.

8.1 Interrupt enable GPIO mask register (IEGPIOR)

IEGPIOR register is used to enable the interruption from a particular GPIO interrupt source to the host. The IEG[7:0] bits are the interrupt enable mask bits correspond to the GPIO[7:0] pins.

Table 13. Register

Bits	Name	Description
7:0	IEG[x]	Interrupt Enable GPIO Mask (where $x = 7$ to 0) Writing a '1' to the IE[x] bit will enable the interruption to the host.

8.2 Interrupt status GPIO register (ISGPIOR)

ISGPIOR register monitors the status of the interruption from a particular GPIO pin interrupt source to the host. Regardless whether the IEGPIOR bits are enabled or not, the ISGPIOR bits are still updated. The ISG[9:0] bits are the interrupt status bits correspond to the GPIO[7:0] pins.

				IS	GPIOR			
Bit	7	6	5	4	3	2	1	0
	ISG7	ISG6	ISG5	ISG4	ISG3	ISG2	ISG1	ISG0
R/W	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0

Table 14. Register

Bits	Name	Description
7:0	ISG[x]	Interrupt Status GPIO (where x = 7 to 0) Read : Interrupt Status of the GPIO[x]. Reading the register will clear any bits that has been set to '1' Write : Writing to this register has no effects

8.3 GPIO controller

A total of 8 GPIOs are available in the STMPE801 port expander IC. The GPIO controller contains the registers that allow the host system to configure each of the pins as input or output. Unused GPIOs should be configured as outputs to minimize the power consumption.

A group of registers are used to control the exact function of each of the 8 GPIO. The registers and their respective address is listed in the following table.

Address	Register Name	Description	Auto-Increment (during sequential R/W)
0x10	GPMR	GPIO monitor pin state register	Yes
0x11	GPSR	GPIO set pin state register	Yes
0x12	GPDR	GPIO set pin direction register	Yes

Table 15. Register

All GPIO registers are named as GPxx, where

Xxx represents the functional group

Bit	7	6	5	4	3	2	1	0
GPxx	IO-7	IO-6	IO-5	IO-4	IO-3	IO-2	IO-1	IO-0

The function of each bit is shown in the following table:

Table 16. Pin function

Register Name	Function				
GPIO Monitor Pin State	Reading this bit yields the current state of the bit. Writing has no effect.				
GPIO Set Pin State	Writing '1' to this bit causes the corresponding GPIO to go to '1' state. Writing '0' to this bit causes the corresponding GPIO to go to '0' state.				
GPIO Set Pin Direction	'0' sets the corresponding GPIO to input state, and '1' sets it to output state. All bits are '0' on reset.				

On power-up reset, all GPIO are set as input.

8.4 **Power supply**

STMPE801 GPIO operates from a separate supply pin (V_{IO}). This dedicated supply pin provides a level-shifting feature to the STMPE801.

GPIO will remain valid until V_{IO} is removed.

The host system may choose to turn off V_{CC} supply while keeping V_{IO} supplied. However it is not allowed to turn off supply to V_{IO}, while keeping the Vcc supplied.

8.5 Reset

STMPE801 is equipped with an internal POR circuit that holds the device in reset state, until the V_{IO} supply input is valid. The internal POR is tied to the Vio supply pin.

The reset pin allows the host to reset the STMPE801 directly. Minimum pulse width of reset signal is $100\mu s$.

During the period when reset pin is asserted, all GPIO default to inputs.

9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Dim.		mm.		inch			
	Min	Тур	Max	Min	Тур	Max	
A	0.45	0.55	0.60	0.020	0.022	0.024	
A1		0.02	0.05		0.001	0.002	
b	0.15	0.20	0.25	0.006	0.008	0.010	
D	2.50	2.60	2.70	0.098	0.102	0.106	
E	1.70	1.80	1.90	0.067	0.071	0.075	
е		0.40			0.016		
L	0.35	0.40	0.45	0.014	0.016	0.018	

57

57

Figure 9. QFN16L tape and reel information

Dim		mm.		inch			
Dim.	Min.	Тур	Max.	Min.	Тур.	Max.	
А			1.75			0.068	
a1	0.1		0.25	0.004		0.010	
a2			1.64			0.063	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S	8° (max.)						

Table 18. SO-16 mechanical data

Figure 11. Package dimensions

10 Revision history

Table 19. Revision history

Date	Revision	Changes
07-Dec-2006	1	Initial release
22-Jan-2007	2	Added Marking and Reel information
27-Apr-2007	3	Updated Chapter 8.4 and Chapter 8.5 on page 18
02-Jul-2007	4	Coverpage QFN package drawing updated

