: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

- LOW R ${ }_{\text {ON }}: 5.5 \Omega$ TYPICAL
- V_{CC} OPERATING RANGE: 3.0 TO 3.6 V
- LOW CURRENT CONSUMPTION: $20 \mu \mathrm{~A}$
- ESD HBM MODEL: > 2 KV
- CHANNEL ON CAPACITANCE: 7.5 pF TYPICAL
- SWITCHING TIME SPEED: 9 ns
- NEAR TO ZERO PROPAGATION DELAY: 250 ps
- VERY LOW CROSS TALK: -40 dB AT 250MHz
- BIT TO BIT SKEW: 200 ps
- > 450 MHZ -3db TYPICAL BANDWIDTH
- THREE SWITCH S.P.D.T FOR LED SUPPORTING
- PACKAGE: QFN56
- Pb FREE

DESCRIPTION

The STMUX1000L is a 16 to 8 Bit multiplexer/ demultiplexer low R R_{ON} bidirectional LAN Switch designed for various standard, such as 10/100/ 1000 Ethernet.

Table 1: Order Codes

PACKAGE	T\& R
QFN	STMUX1000LQTR

It is designed for very low Cross Talk, low bit to bit skew and low I/O capacitance.
The differential signal from the Gigabit Ethernet Transceiver is multiplexed in one of two selected output while the unselected switch go to Hi-Z status.
The device integrates three 16Ω switches, S.P.D.T. (Single Pole Dual Throw Channel), for LED supporting.

Figure 1: Pin Connection (Top Through View)

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN ${ }^{\circ}$	SYMBOL	NAME AND FUNCTION
2, 3, 7, 8, 11, 12, 14, 15	A, B, C, D, E, F, G, H	8 Bit Bus
48, 47, 43, 42, 37, 36, 32, 31	A0, B0, C0, D0, E0, F0, G0, H0	8 Bit Multiplexed to Bus 0
46, 45, 41, 40, 35, 34, 30, 29	A1, B1, C1, D1, E1, F1, G1, H1	8 Bit Multiplexed to Bus 1
5	N/C	Not Connected
17	SEL	BUS and LED Switch Selection
19, 20, 54	LED1, LED2, LED3	LED Switch Input
22, 23, 25, 26, 51, 52	LED1_0, LED2_0, LED1_1, LED2_1, LED3_0, LED3_1	LED Switch Output
4, 10, 18, 27, 38, 50, 56	V_{DD}	Supply Voltage
$\begin{gathered} 1,6,9,13,16,21,24,28, \\ 33,39,44,49,53,55 \end{gathered}$	GND	Ground

Table 3: Lan Switch Function Table

SE	FUNCTION
L	8 Bit Bus to 8 Bit Multiplexed Bus 0
H	8 Bit Bus to 8 Bit Multiplexed Bus 1

Table 4: Led Switch Function Table

SE	FUNCTION
L	Led Switch Input connected to Led Switch Output X_0
H	Led Switch Input connected to Led Switch Output X_1

Table 5: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage to Ground	-0.5 to 4	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to 4	V
$\mathrm{~V}_{\mathrm{IC}}$	DC Control Input Voltage	-0.5 to 4	V
I_{O}	DC Output Current $\left(^{*}\right)$	120	mA
P_{D}	Power Dissipation	0.5	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
${ }^{*}$) If not exceed the max limit of P_{D}.
Table 6: DC Electrical Characteristics For Gigabit Ethernet LAN8/16MUX/DEMUX ($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{IH}	Voltage Input High	High Level Guaranteed	2			V
$\mathrm{V}_{\text {IL }}$	Voltage Input Low	Low Level Guaranteed	-0.5		0.8	V
V_{IK}	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
I_{H}	Input High Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 5	$\mu \mathrm{A}$
ILL	Input Low Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$			± 5	$\mu \mathrm{A}$
IofF	Power Down Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~A} \text { to } \mathrm{HV}=0 \mathrm{~V} \text {, } \\ & \mathrm{A} 0 \text { to } \mathrm{HO} \text { and } \mathrm{A} 1 \text { to } \mathrm{H} 1 \leq 3.6 \mathrm{~V} \end{aligned}$			± 5	$\mu \mathrm{A}$
RON	Switch ON Resistance (1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.5 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$		5.5	7.5	Ω
$\mathrm{R}_{\text {FLAT }}$	ON Resistance FLATNESS $(1,2)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} @ 1.5 \text { and } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{N}}=-40 \mathrm{~mA} \end{aligned}$		0.8		Ω
$\Delta \mathrm{R}_{\text {ON }}$	ON Resistance Match between channel $\Delta \mathrm{R}_{\text {ON }}=\mathrm{R}_{\text {ONMAX }}-\mathrm{R}_{\text {ONMIN }}(1,3)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.5 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$		0.5	1	Ω

Note 1: Measured by voltage drop between Channels @ indicated current trough the switch. On-Resistance is determinate by the lower the voltage on the two.
Note 2: Flatness is defined as the difference the RONMAX and $R_{O N M I N}$ of On-Resistance over the specified range condition. Note 3: $\Delta \mathrm{R}_{\mathrm{ON}}$ measured @ same V_{CC}, temperature and voltage level.

Table 7: DC Electrical Characteristics For 10/100 Ethernet LAN8/16MUX/DEMUX
($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{IH}	Voltage Input High	High Level Guaranteed	2			V
V_{IL}	Voltage Input Low	Low Level Guaranteed	-0.5		0.8	V
V_{IK}	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	V
I_{H}	Input High Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 5	$\mu \mathrm{A}$
ILL	Input Low Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$			± 5	$\mu \mathrm{A}$
Ioff	Power Down Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~A} \text { to } \mathrm{HV}=0 \mathrm{~V} \text {, } \\ & \mathrm{A} 0 \text { to } \mathrm{H} 0 \text { and } \mathrm{A} 1 \text { to } \mathrm{H} 1 \leq 3.6 \mathrm{~V} \end{aligned}$			± 5	$\mu \mathrm{A}$
R_{ON}	Switch ON Resistance (1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.25 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$		5.5	7.5	Ω
$\mathrm{R}_{\text {FLAT }}$	ON Resistance FLATNESS $(1,2)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} @ 1.25 \text { and } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$		0.9		Ω
$\Delta \mathrm{R}_{\text {ON }}$	ON Resistance Match between channel $\Delta \mathrm{R}_{\text {ON }}=\mathrm{R}_{\text {ONMAX }}-\mathrm{R}_{\text {ONMIN }}(1,3)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.25 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA} \end{aligned}$			1	Ω

Note 1: Measured by voltage drop between Channels @ indicated current trough the switch. On-Resistance is determinate by the lower the voltage on the two.
Note 2: Flatness is defined as the difference the $R_{\text {ONMAX }}$ and $R_{\text {ONMIN }}$ of On-Resistance over the specified range condition.
Note 3: $\Delta \mathrm{R}_{\mathrm{ON}}$ measured @ same V_{CC}, temperature and voltage level.
Table 8: Led Switches DC Electrical Characteristics
($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{IH}	Voltage Input High	High Level Guaranteed	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Voltage Input Low	Low Level Guaranteed	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IK}}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	V
I_{IH}	Input High Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$			± 5	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$		± 5	$\mu \mathrm{~A}$	
R_{ON}	Switch ON Resistance (1)	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.25$ to V_{CC} $\mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}$		16	25	Ω
$\mathrm{R}_{\mathrm{FLAT}}$	ON Resistance FLATNESS $(1,2)$	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} @ 1.25$ and V_{CC} $\mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}$		8		Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON Resistance Match between channel $\Delta R_{\text {ON }}=R_{\text {ONMAX }}-R_{\text {ONMIN }}(1,3)$	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.25$ to V_{CC} $\mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}$	1	2	Ω	

Note 1: Measured by voltage drop between Channels @ indicated current trough the switch. On-Resistance is determinate by the lower the voltage on the two.
Note 2: Flatness is defined as the difference the $R_{O N M A X}$ and $R_{\text {ONMIN }}$ of On-Resistance over the specified range condition.
Note 3: $\Delta \mathrm{R}_{\mathrm{ON}}$ measured @ same V_{CC}, temperature and voltage level.

Table 9: Capacitance Lan 8/16 MUX/DEMUX ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance (Note 4)	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$		2	3	pF
$\mathrm{C}_{\text {OFF }}$	Port $\times 0$ to Port $\times 1$, Switch Off (Note 4)	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$		4	6	pF
C_{ON}	Capacitance Switch On (x to $\times 0$ or \times to $\times 1$) (Note 4)	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$		7.5	11	pF

Note 4: $\mathrm{x}=\mathrm{A}$ to $\mathrm{H}, \mathrm{x} 0=\mathrm{A} 0$ to $\mathrm{H} 0, \mathrm{x} 1=\mathrm{A} 1$ to H 1 .
Table 10: Capacitance Led Switches $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$			10	pF
$\mathrm{C}_{\text {OFF }}$	Port x 0 to Port $\times 1$, Switch Off	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$		4	10	pF
$\mathrm{C}_{\text {ON }}$	Capacitance Switch On	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$		11	20	pF

Table 11: Power Supply Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{CC}	Quiescent Power Supply	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND		150	500	$\mu \mathrm{~A}$

Table 12: LAN 8/16 MUX/DEMUX Dynamic Electrical CharacteristicS
($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Xtalk	Cross-Talk	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{f}=250 \mathrm{MHz}$		-40		dB
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{f}=250 \mathrm{MHz}$		-36		dB
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		450		MHz

Table 13: LAN 8/16 MUX/DEMUX Switching Characteristics
($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{\text {PD }}$	Propagation Delay	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		0.25		ns
$\begin{aligned} & \mathrm{t} \text { tPZ, } \\ & \mathrm{t}_{\text {PZLL }} \end{aligned}$	Line Enable Time, SE to x to $\times 0$ or x to x 1	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	0.5	6.5	9	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{pHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Line Disable Time, SE to x to x 0 or x to x 1	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	0.5	6.5	8.5	ns
$\mathrm{t}_{\text {SK(0) }}$	Output Skew between center port to any other port	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		0.1	0.2	ns
$\mathrm{t}_{\text {SK(P) }}$	Skew between opposite transition of the same output ($\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$)	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		0.1	0.2	ns

Note 4: $\mathrm{x}=\mathrm{A}$ to $\mathrm{H}, \mathrm{x0}=\mathrm{A} 0$ to $\mathrm{H} 0, \mathrm{x} 1=\mathrm{A} 1$ to H 1 .
Table 14: Three Channel Switches Switching Characteristics
($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
t_{ON}	Propagation Delay	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V			50	ns
$\mathrm{t}_{\mathrm{OFF}}$	Propagation Delay	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V			30	ns

Figure 3: Bandwidth

Figure 4: Schematic Bandwidth

QFN56 (11x5) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	0.70	0.75	0.80	0.028	0.030	0.031
A1			0.05			0.002
A3		0.20		0.008		
b	0.20	0.25	0.30	0.008	0.010	0.012
D	10.90	11.00	11.10	0.429	0.433	0.437
D2	8.30	8.40	8.50	0.327	0.331	0.335
D3		9.50			0.374	
E2	2.90	5.00	5.10	0.193	0.197	0.201
E3		2.40	2.50	0.091	0.094	0.098
e		3.50			0.138	
L	0.30	0.40	0.50	0.012	0.016	0.020

7576329-A

Table 15: Revision History

Date	Revision	Description of Changes
08-Apr-2005	1	First Release.
03-May-2005	2	Maturity Code.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

