

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STMUX7000

7-channel MUX/DEMUX for analog video signal

Features

■ Low R_{ON}: 4.0 Ω typical

■ V_{CC} operating range: 3.0 to 3.6 V

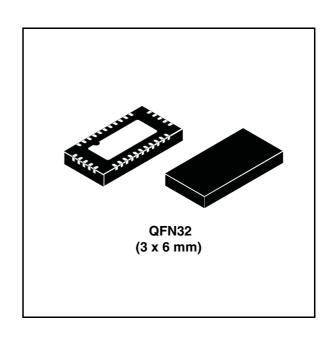
Enhanced ESD protection: > 8 kV (contact) and 8 kV (HBM)

■ Channel on capacitance: 7.8 pF typical

■ Designed for VGA signal switching

Integrated switches for RGB, HSYNC, VSYNC and DDC signals

■ Very low crosstalk: -45 dB at 250 MHz


 > 1000 MHz -3 dB typical bandwidth (or data frequency)

 Low power mode for minimum power consumption

■ Package: QFN32L

Applications

Audio/video switching

Description

The STMUX7000 is a 7-channel multiplexer/demultiplexer low R_{ON} bidirectional designed for analog video signal, such as VGA. It is designed for very low crosstalk, and high bandwidth to maintain high signal integrity.

The analog video signal multiplexed from one of two selected sources in the notebook and docking station while the unselected switch goes to Hi-Z status.

The device is also protected against high ESD that supports up to 8 kV contact on all I/O pins.

The device can be put into low power mode consuming minimum power.

Table 1. Device summary

Order code	Package	Packing
STMUX7000QTR	QFN32 (3 x 6 x 0.8 mm)	Tape and reel

Contents STMUX7000

Contents

1	Pin description 3
2	Maximum rating 5
	2.1 Recommended operating conditions 5
3	Electrical characteristics 6
4	Package mechanical data14
5	Revision history

STMUX7000 Pin description

1 Pin description

Figure 1. Pin connection (top through view)

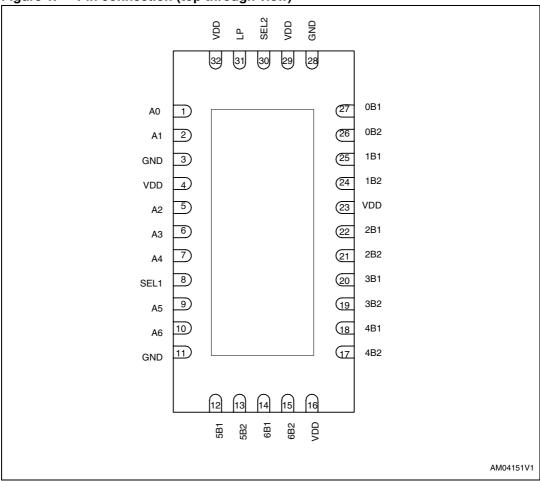


Table 2. Pin description

Pin	Symbol	Name and function
8	SEL 1	Selecion for bit 0, 1, 2, 3, 4
30	SEL 2	Selection for bit 5, 6
1, 2, 5, 6, 7, 9, 10	A0, A1, A2, A3, A4, A5, A6	8-bit bus
4, 16, 23, 29, 32	VDD	Supply voltage
3, 11, 28	GND	Ground
27, 25, 22, 20, 18, 14, 12	0B1, 1B1, 2B1, 3B1, 4B1, 5B1, 6B1	8-bit multiplexed to bus 1
26, 24, 21, 19, 17, 15, 13	0B2, 1B2, 2B2, 3B2, 4B2, 5B2, 6B2	8-bit multiplexed to bus 2
31	LP	Low power mode enable

Pin description **STMUX7000**

A0 ___ - 0B1 A1 — — 1B1 A2 -___ 2B1 АЗ - 3B1 A4 -- 4B1 - 0B2 -0 رز 0-- 1B2 _ 2B2 0-_ 3B2 ---- 4B2 SEL1 . _ 5B1 Α5 Α6 6B1 _ 5B2 _ 6B2 SEL2 Low Power Management AM08684V1

Figure 2. Input equivalent circuit

Table 3. Bit 0, 1, 2, 3, 4 switch function table

	, , , ,	
LP	SEL 1	Function
L	L	Bit 0, 1, 2, 3, 4 multiplexed to bus 1, bus 2 in Hi-Z
L	Н	Bit 0, 1, 2, 3, 4 multiplexed to bus 2, bus 1 in Hi-Z
Н	Х	Bus 1 and 2 in Hi-Z

Table 4. Bit 5, 6 switch function table

LP	SEL 2	Function
L	L	Bit 5,6 multiplexed to bus 1, bus 2 in Hi-Z

STMUX7000 Pin description

Table 4. Bit 5, 6 switch function table

LP	SEL 2	Function
L	Н	Bit 5,6 multiplexed to bus 2, bus 1in Hi-Z
Н	X	Bus 1 and 2 in Hi-Z

Maximum rating STMUX7000

2 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage to ground	-0.5 to 4.6	V
V _{IO}	DC input output voltage	-0.5 to 4.6	٧
V _{IC}	DC control input voltage	-0.5 to 4.6	V
Io	DC output current ⁽¹⁾	120	mA
P _D	Power dissipation	0.5	W
T _{stg}	Storage temperature	-65 to 150	°C
TL	Lead temperature (10 sec)	300	°C

^{1.} If $V_{IO} \times I_{O}$ does not exceed the maximum limit of P_{D} .

2.1 Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter		Unit		
Symbol	Faranielei	Min	Тур	Max	
V _{CC}	Supply voltage to ground	3	-	3.6	V
V _{IC}	DC control input voltage (SEL, LP)	0	-	5	V
V _{IO}	DC input/output voltage	0	-	V _{CC}	V
T _A	Operating temperature	-40	-	85	°C

3 Electrical characteristics

Table 7. DC electrical characteristics ($V_{CC} = 3.3 \text{ V} \pm 10\%$)

				Value			
Symbol	Parameter	Test condition		-40 to 85 °C	;	Unit	
			Min	Тур	Max		
V _{IH}	Voltage input high (SEL, LP)	High level guaranteed	2	-	-	V	
V _{IL}	Voltage input low (SEL, LP)	Low level guaranteed	-0.5	-	0.8	V	
V _{IK}	Clamp diode voltage (SEL, LP)	$V_{CC} = 3.6 \text{ V}$ $I_{IN} = -18 \text{ mA}$	-	-0.8	-1.2	٧	
I _{IH}	Input high current (SEL, LP)	$V_{CC} = 3.6 \text{ V}$ $V_{IN} = V_{CC}$	-	-	±5	μA	
I _{IL}	Input low current (SEL, LP)	V _{CC} = 3.6 V V _{IN} = GND	-	-	±5	μA	
IOFF _(SW) ⁽¹⁾	Leakage current through the switch common terminals (A to H) (LED1 to LED3)	$V_{CC} = 3.6 \text{ V}$ A to H = V_{CC} LED1 to LED3 = V_{CC} A0 to H0 = 0 V A1 to H1 = floating LEDx_0 = 0 V LEDx1 = floating SEL = V_{CC}	-	-	±1	μА	
IOFF _{(SEL,} LP)	SEL, LP pin leakage current	V _{CC} = 0 V SEL = 0 to 3.6 V	-	-	±1	μΑ	
R _{ON}	Switch ON resistance ⁽²⁾	$V_{CC} = 3.0 \text{ V}$ $V_{IN} = 0 \text{ to } 1.2 \text{ V}$ $I_{IN} = -40 \text{ mA}$	-	4.0	6.5	Ω	
R _{FLAT}	ON resistance flatness (2)	$V_{CC} = 3.0 \text{ V}$ V_{IN} at 0 and 1.2V $I_{IN} = -40 \text{ mA}$	-	0.5	-	Ω	
Δ R _{ON}	ON resistance match between channel $ \frac{\Delta R_{ON}}{(2)(4)} = R_{ONMAX} - R_{ONMIN} $	V _{CC} = 3.0 V V _{IN} = 0 to 1.2 V I _{IN} = -40 mA	-	0.4	1	Ω	

^{1.} Refer to Figure 4: Test circuit for leakage current (IOFF) on page 10

Measured by voltage drop between channels at indicated current through the switch. ON resistance is determined by the lower of the voltages.

^{3.} Flatness is defined as the difference between the R_{ONMAX} and R_{ONMIN} of ON resistance over the specified range.

^{4.} ΔR_{ON} measured at same $V_{CC},$ temperature and voltage level.

Electrical characteristics STMUX7000

Table 8. Capacitance ($T_A = 25$ °C, f = 1 MHz)

Cumbal	Parameter	Test condition	Value			Unit
Symbol	Parameter	rest condition	Min	Тур	Max	Offic
C _{IN}	SEL, LP pin input capacitance ⁽¹⁾	DC = 0.25 V AC = 0.5 V _{PP} f = 1 MHz	-	2	3	pF
C _{OFF}	Switch off capacitance ⁽²⁾	DC = 0.25 V AC = 0.5 V _{PP} f = 1 MHz	-	2.8	6.5	pF
C _{ON}	Switch on capacitance ⁽³⁾	DC = 0.25 V AC = 0.5 V _{PP} f = 1 MHz	-	7.8	-	pF

- 1. Refer to Figure 5 on page 11.
- 2. Refer to Figure 6 on page 11.
- 3. Refer to Figure 7 on page 12.

Table 9. Power supply characteristics

Symbol	Parameter	Test condition	-	Value 40 to 85 °C	;	Unit
			Min	Тур	Max	
I _{CC}	Active mode power supply current	$V_{CC} = 3.6 \text{ V}, V_{IN} = V_{CC} \text{ or }$ GND, LP = GND	-	150	500	μΑ
I _{CC}	Low power mode power supply current	V_{CC} = 3.6 V, V_{IN} = V_{CC} or GND, LP = V_{CC}	-	10	15	μA

Table 10. Dynamic electrical characteristics ($V_{CC} = 3.3 \text{ V} \pm 10\%$)

				Value		
Symbol	Parameter	Test condition	-	40 to 85 °C	2	Unit
			Min	Тур	Max	
X _{talk}	Crosstalk ⁽¹⁾	$R_L = 50 \Omega$, $R_S = 50 \Omega$ f = 250 MHz	-	-45	-	dB
O _{IRR}	Off isolation ⁽²⁾	$R_L = 50 \Omega$, $R_S = 50 \Omega$ f = 250 MHz	-	-32	-	dB
BW	-3 dB bandwidth ⁽³⁾	$R_L = 50 \Omega, R_S = 50 \Omega$ 0 < $V_{IN} \le 1.2 V$	-	1000	-	MHz

- 1. Refer to Figure 9 on page 13.
- 2. Refer to Figure 10 on page 14.
- 3. Refer to Figure 8 on page 12.

Table 11. Switching characteristics ($T_A = 25$ °C, $V_{CC} = 3.3$ V ±10%)

Symbol	Parameter	Test condition	Value			Heit
			Min	Тур	Max	Unit
t _{PD}	Propagation delay	V _{CC} = 3 to 3.6 V	-	0.25	-	ns
t _{PZH} , t _{PZL}	Line enable time, SE to x to x0 or x to x1	$V_{CC} = 3$ to 3.6 V 1 K Ω pull up/down resistor at xb1 or xB2	0.5	6.5	15	ns
t _{PHZ} , t _{PLZ}	Line disable time, SE to x to x0 or x to x1	$V_{CC} = 3$ to 3.6 V 1 K Ω pull up/down resistor at xb1 or xB2	0.5	16		ns
t _{SK(O)}	Output skew between center port to any other port	V _{CC} = 3 to 3.6 V	-	0.1	0.2	ns
t _{SK(P)}	Skew between opposite transition of the same output (t _{PHL} , t _{PLH})	V _{CC} = 3 to 3.6 V	-	0.1	0.2	ns

Table 12. ESD performance

Symbol	Test condition	Value			Unit
	rest condition	Min	Тур	Max	Oille
ESD	Contact discharge ⁽¹⁾ IEC61000-4-2	-	±8	-	kV
	Human body model (JESD22-A114)	-	±8	-	kV

^{1.} Refer to Figure 3: Diagram for suggested VDD decoupling on page 10.

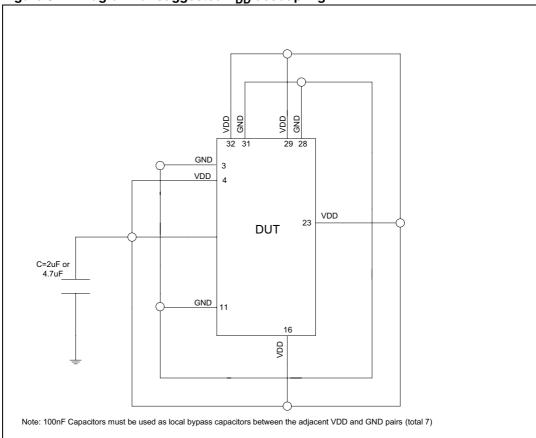


Figure 3. Diagram for suggested V_{DD} decoupling

1. Applicable for system level ESD test

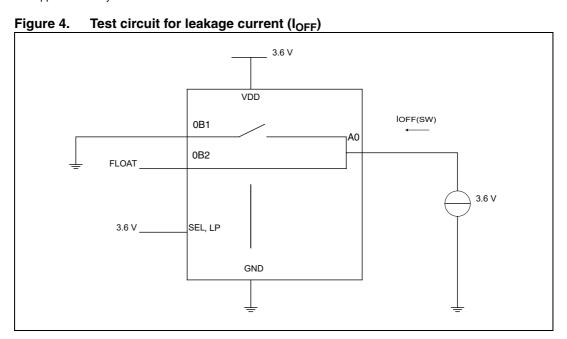
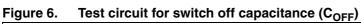
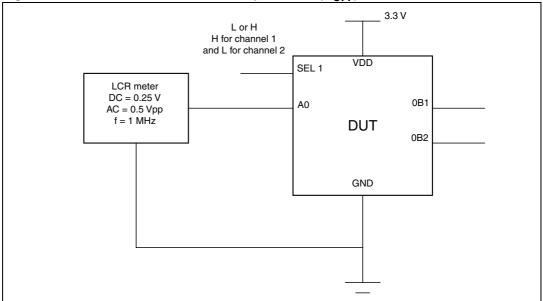




Figure 5. Test circuit for SEL pin input capacitance (C_{IN}) 3.3 V VDD LCR meter DC = 0.25 V AC = 0.5 Vpp f = 1 MHz SEL, LP DUT GND

Electrical characteristics STMUX7000

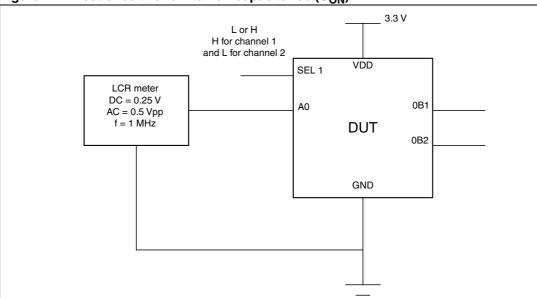
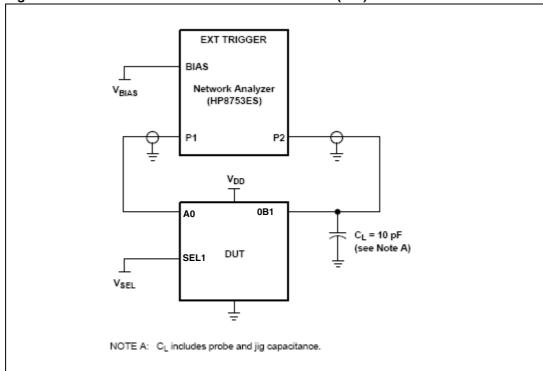



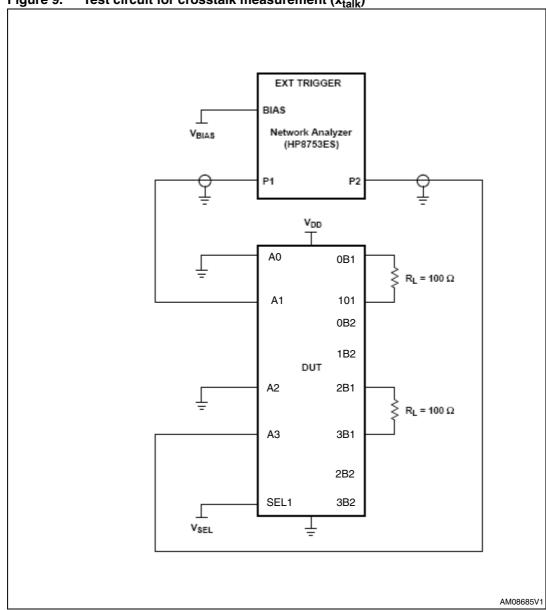
Figure 7. Test circuit for switch on capacitance (C_{ON})

Figure 8. Test circuit for bandwidth measurement (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{SEL1} = 0$ and A0 is the input, the output is measured at 0B1. All unused analog I/O ports are left open.

HP8753ES setup:

Average = 4


 $R_{BW} = 3 \text{ kHz}$

 $V_{BIAS} = 0.35 V$

ST = 2 s

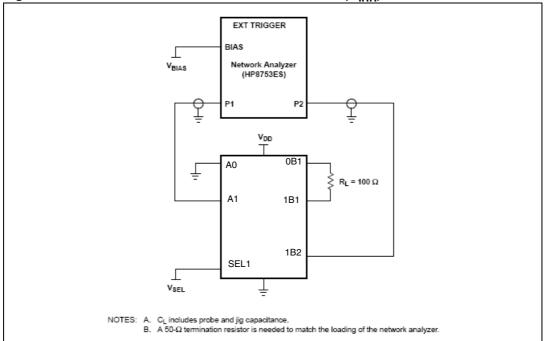
P1 = 0 dBm

Figure 9. Test circuit for crosstalk measurement (x_{talk})

Crosstalk is measured at the output of the non-adjacent ON channel. For example, when $V_{SEL1} = 0$, and A1 is the input, the output is measured at A3. All unused analog input ports are connected to GND and output ports are left open.

HP8753ES setup:

Average = 4


 $R_{BW} = 3 \text{ kHz}$

 $V_{BIAS} = 0.35 V$

ST = 2 s

P1 = 0 dBm

Figure 10. Test circuit for off isolation measurement (OIRR)

Off isolation is measured at the output of the OFF channel. For example, when $V_{SEL1} = 0$, and A1 is the input, the output is measured at 1B2. All unused analog input ports are connected to GND and output ports are left open.

HP8753ES setup:

Average = 4

 $R_{BW} = 3 \text{ kHz}$

 $V_{BIAS} = 0.35 V$

ST = 2 s

P1 = 0 dBm

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.



Table 13. Mechanical data for QFN32L (3 x 6 x 0.8 mm) - pitch 0.4 mm

Cumbal	Millimeters			
Symbol	Min	Тур	Мах	
А	0.70	0.80	0.90	
A1	0.00	0.05	0.08	
A3		0.25		
Т	0.00		12.00	
b	0.15	0.20	0.25	
е		0.40		
e1		4.00		
K		0.75		
D		3.00		
E		6.00		
L	0.25	0.30	0.35	
D2	1.50	1.60	1.79	
E2	3.80	3.90	4.00	

RECOMMENDED FOOTPRINT -3.00- $ot\!\!\!/$ otin
oti \square otin
otiotin
otin
oti \square otin
otiØ \square otin
otiA0BZ_FR

Figure 12. Footprint recommendation

5/

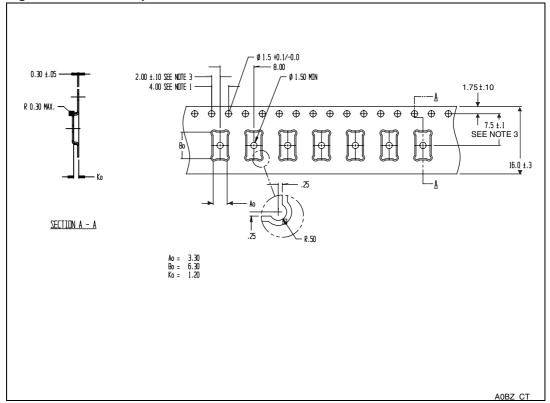


Figure 13. Carrier tape and reel information

18/20 Doc ID 17177 Rev 3

STMUX7000 Revision history

5 Revision history

Table 14. Document revision history

Date	Revision	Changes
23-Apr-2010	1	Initial release.
16-Jun-2010	2	Modified: Figure 12.
09-Mar-2011	3	Updated: Table 8, Table 11 and Table 12.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

20/20 Doc ID 17177 Rev 3