imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

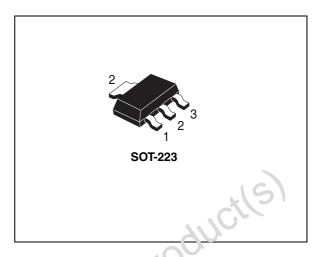
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

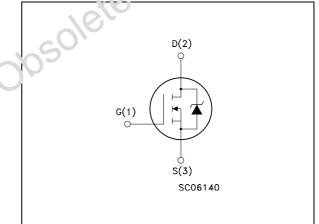
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STN2NE10L

General features


Туре	V _{DSS} (@Tjmax)	R _{DS(on)}	I _D
STN2NE10L	100V	<0.4Ω	1.8A

- Exceptional dv/dt capability
- Avalanche rugged technology
- 100% avalanche tested
- Low threshold drive


Description

This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

ductle

Internal schematic diagram

Applications

Switching application

olete

Order codes

Part number	Marking	Package	Packaging
STN2NE10L	N2NE10L	SOT-223	Tape & reel

February 2	007
------------	-----

Contents

1	Electrical ratings
2	Electrical characteristics42.1Electrical characteristics (curves)6
3	Test circuit
4	Package mechanical data9
5	Revision history
obso	Revision history

1

Electrical ratings

Table 1. Absolute maximum rating

Symbol	Parameter	Value	Unit				
V _{DS}	Drain-source voltage (V _{GS} = 0)	100	V				
V _{GS}	Gate-source voltage	± 20	V				
Ι _D	Drain current (continuous) at $T_{C} = 25^{\circ}C$	1.8	А				
Ι _D	Drain current (continuous) at T _C =100°C	1.3	Α				
I _{DM} ⁽¹⁾	Drain current (pulsed)	7.2	А				
P _{TOT}	Total dissipation at $T_C = 25^{\circ}C$	2.5	W				
	Derating factor	0.02	W/°C				
dv/dt (2)	Peak diode recovery voltage slope	6	V/ns				
T _J T _{stg}	Operating junction temperature Storage temperature	150 -65 to 150	°C				
1. Pulse widt	h limited by safe operating area	200					
2. $I_{SD} \leq 7.2 \text{ A}$, di/dt $200 \text{A}/\mu \text{s}$, $V_{DD} \leq I_{(BR)DSS}$, $T_J \leq T_{JMAX}$							
Table 2.	Table 2. Thermal data						
Rthj-pcb	Thermal resistance junction-PC Board max	50	°C/W				

Table 2. Thermal data

Rthj-pcb	Thermal resistance junction-PC Board max	50	°C/W
Rthj-amb	Thermal resistance junction-ambient max	60	°C/W
Τ _Ι	Maximum lead temperature for soldering purpose	260	°C

1

Avalanche characteristics Table 3.

	Symbol	Parameter	Value	Unit
	I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	1.8	А
	E _{AS}	Single pulse avalanche energy (starting Tj=25°C, Id=Iar, Vdd=25V)	20	mJ
Obsole	5			

 γ_{0}

57

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250 μΑ, V _{GS} = 0	100			V
I _{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	V_{DS} = Max rating, V_{DS} = Max rating @125°C			1 10	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20V$			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	1.7	3	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 1A V _{GS} = 5V, I _D = 1A		0.33 0.38	0.4 0.45	Ω Ω

Table 4. On/off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} >I _{D(on)} x R _{DS(on)max,} I _D =1A	1	3		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		345 45 20		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V _{DD} =80V, I _D = 7A V _{GS} =5V (see Figure 13)		10 5 4	14	nC nC nC

1. Pulsed: pulse duration=300µs, duty cycle 1.5%

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time rise time	V_{DD} =50 V, I _D =3.5A, R _G =4.7Ω, V _{GS} =5V (see Figure 14)		7 17		ns ns
t _{d(off)} t _f	Turn-off-delay time fall time	V_{DD} =50 V, I _D =3.5A, R _G =4.7Ω, V _{GS} =5V (see Figure 14)		22 8		ns ns
t _{r(Voff)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	V_{DD} =80 V, I _D =7A, R _G =4.7Ω, V _{GS} =5V (see Figure 14)		8 9 19		ns ns ns

Table 6. Switching times

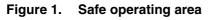
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current				2	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				8	А
$V_{SD}^{(2)}$	Forward on voltage	I _{SD} =2A, V _{GS} =0			1.5	V
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge	I _{SD} =7 Α, di/dt = 100Α/μs,		75 190		ns nC
I _{RRM}	Reverse recovery current	V _{DD} =30 V, Tj=150°C		5		А

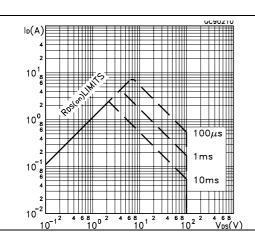
Table 7. Source drain diode

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration=300µs, duty cycle 1.5% obsolete Product(s) - Obsolete Product(s)

 $Z_{th} = KR_{thJ-c}$


τ


 $10^{-1} t_{p}(s)$

 $\delta = t_n / \tau$

 10^{-2}

2.1 Electrical characteristics (curves)

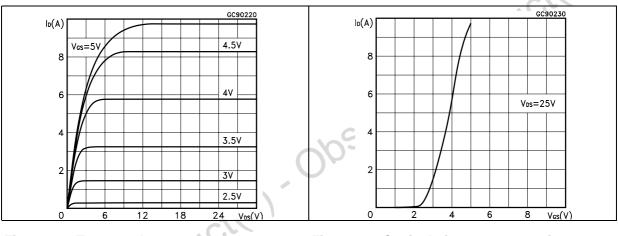


Figure 2.

n

10⁰

10

 10^{-2}

Figure 4.

10⁻⁵

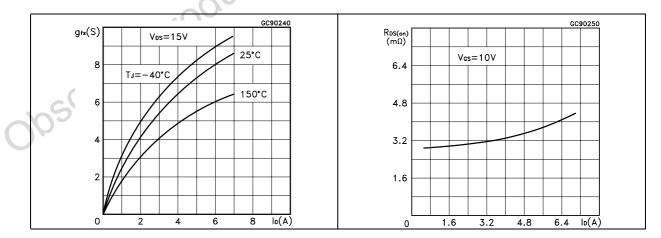
Thermal impedance

 $\delta = 0.05$

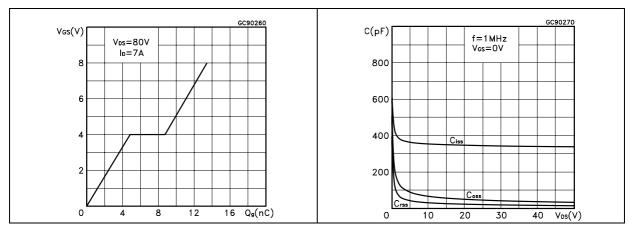
SINGLE PULS

 10^{-3}

Transfer characteristics


=0.02

 $\delta = 0.01$


10-4

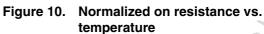
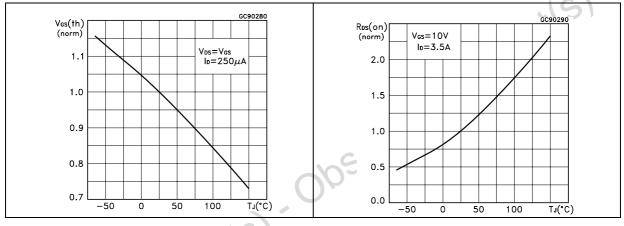
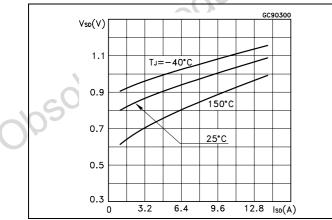
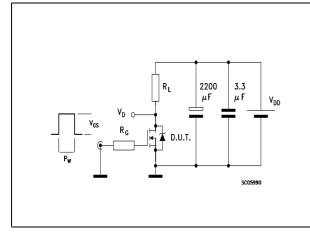
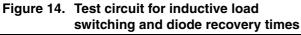


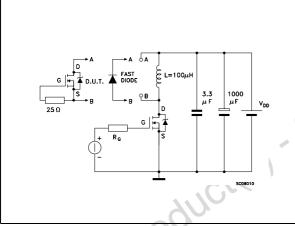
Figure 7. Gate charge vs. gate-source voltage Figure 8. Capacitance variations

Figure 9. Normalized gate threshold voltage vs. temperature


Figure 11. Source-drain diode forward characteristics




57

3 Test circuit

Figure 12. Switching times test circuit for resistive load

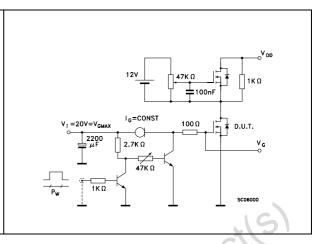


Figure 13. Gate charge test circuit

Figure 15. Unclamped Inductive load test circuit

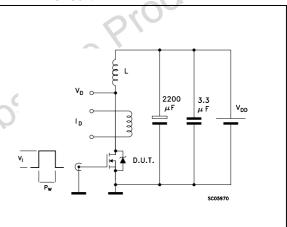
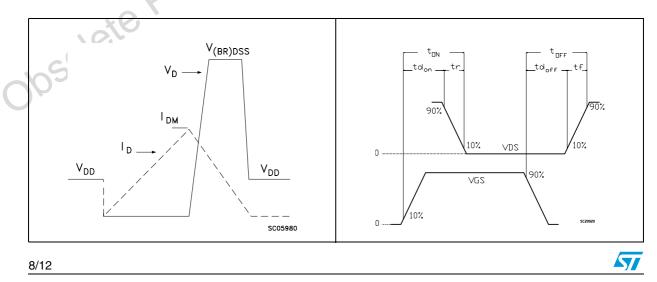
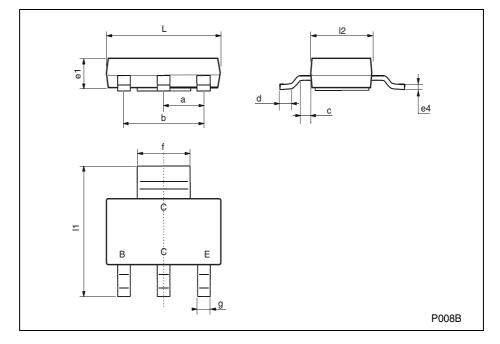



Figure 17. Switching time waveform

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

obsolete Product(s). Obsolete Product(s)

57

DIM.	mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
а	2.27	2.3	2.33	89.4	90.6	91.7
b	4.57	4.6	4.63	179.9	181.1	182.3
с	0.2	0.4	0.6	7.9	15.7	23.6
d	0.63	0.65	0.67	24.8	25.6	26.4
e1	1.5	1.6	1.7	59.1	63	66.9
e4			0.32			12.6
f	2.9	3	3.1	114.2	118.1	122.1
g	0.67	0.7	0.73	26.4	27.6	28.7
11	6.7	7	7.3	263.8	275.6	287.4
12	3.5	3.5	3.7	137.8	137.8	145.7
L	6.3	6.5	6.7	248	255.9	263.8

SOT-223 MECHANICAL DATA

5 Revision history

Date	Revision	Changes
19-Oct-2005	2	Preliminary datasheet
05-March-2006	3	Modified value on <i>Table 4</i>
19-Sep-2006	4	New template, no content change
01-Feb-2007	5	Typo mistake on <i>Table 1</i> .

obsolete Product(s) - Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

