

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-channel 400 V, 3 Ω typ., 1.8 A SuperMESH3™ Power MOSFET in a SOT-223 package

Datasheet - production data

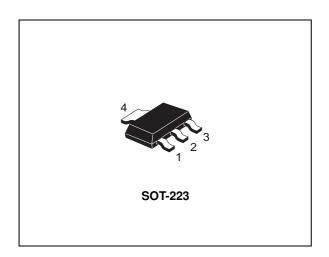
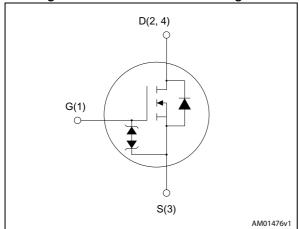



Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	I _D	P _{TOT}
STN3N40K3	400V	3.4 Ω	1.8 A	3.3W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- · Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Application

• Switching applications

Description

This SuperMESH3™ Power MOSFET is the result of improvements applied to STMicroelectronics' SuperMESH™ technology, combined with a new optimized vertical structure. This device boasts an extremely low onresistance, superior dynamic performance and high avalanche capability, rendering it suitable for the most demanding applications.

Table 1. Device summary

Order code	Marking	Package	Packaging
STN3N40K3	3N40K3	SOT-223	Tape and reel

Contents STN3N40K3

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics	6
3	Test circuits	9
4	Package mechanical data	. 10
5	Revision history	. 13

STN3N40K3 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain source voltage	400	V
V _{GS}	Gate-source voltage	± 30	V
I _D	Drain current continuous T _C = 25 °C	1.8 (1)	Α
I _D	Drain current continuous T _C = 100 °C	1 (1)	Α
I _{DM} ⁽²⁾	Drain current pulsed	7.2	Α
I _{AR} (3)	Avalanche current, repetitive or not repetitive	0.6	Α
E _{AS} (4)	Single pulse avalanche energy	45	mJ
P _{TOT}	Total dissipation at T _{amb} = 25 °C	3.3	W
dv/dt (5)	Peak diode recovery voltage slope	12	V/ns
E _{SD}	Gate-source human body model (R = 1.5 k Ω , C = 100 pF)	1	kV
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

- 1. Drain current limited by maximum junction temperature.
- 2. Pulse width limited by safe operating area.
- 3. Pulse width limited by T_{Jmax}.
- 4. Starting $T_i = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.
- 5. Isd \leq 1.8 A, di/dt \leq 400 A/ μ s, $V_{DD} \leq$ 80% $V_{(BR)DSS}$.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-amb} ⁽¹⁾	Thermal resistance junction-amb max.	37.9	°C/W

1. When mounted on FR-4 board of 1 inch 2 , 2oz Cu, t < 30 s

Electrical characteristics STN3N40K3

2 Electrical characteristics

(Tcase = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	400			V
. Zero gate voltage		$V_{GS} = 0, V_{DS} = 400 \text{ V}$			1	μΑ
I _{DSS}	drain current	$V_{GS} = 0$, $V_{DS} = 400 V$, $T_C = 125 °C$			50	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{GS} = V_{DS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 0.6 A		3.1	3.4	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	165	-	pF
C _{oss}	Output capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$	-	17	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	3	-	pF
C _{oss(er)} ⁽¹⁾	Equivalent output capacitance energy related	V _{DS} = 0 to 320 V, V _{GS} = 0	-	9	-	pF
C _{oss(tr)} ⁽²⁾	Equivalent output capacitance time related	V _{DS} = 0 to 320 V, V _{GS} = 0	1	14	1	pF
R _g	Instrinsic gate resistance	f=1 MHz open drain	-	10	-	Ω
Qg	Total gate charge	V _{DD} = 320 V, I _D = 1.8 A,	ı	11	ı	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	2	-	nC
Q_{gd}	Gate-drain charge	(see Figure 18)	-	7	-	nC

^{1.} Is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

4/14 DocID17697 Rev 3

^{2.} Is defined as a constant equivalent capacitance giving the same storage energy as $\rm C_{oss}$ when $\rm V_{DS}$ increases from 0 to 80% $\rm V_{DSS}$

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn on delay time		-	7	-	ns
t _r	Rise time	$V_{DD} = 200 \text{ V}, I_{D} = 0.6,$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	8	-	ns
t _{d(off)}	Turn off delay time	$ \text{G} = 4.7 \Omega, \text{V}_{GS} = 10 \text{ V}$ (see <i>Figure 17</i>)	-	18	-	ns
t _f	Fall time		-	14	-	ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		1.8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		7.2	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 0.6 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 1.8 A, di/dt = 100 A/μs	1	145		ns
Q _r	Reverse recovery charge	V _{DD} = 60 V	-	490		nC
I _{RRM}	Reverse recovery current	(see Figure 20)	-	7		Α
t _{rr}	Reverse recovery time	I _{SD} = 1.8 A, di/dt = 100 A/μs	-	166		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$	-	580		nC
I _{RRM}	Reverse recovery current	(see Figure 20)	-	7		Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

Electrical characteristics STN3N40K3

2.1 Electrical characteristics

Figure 2. Safe operating area

Figure 3. Thermal impedance

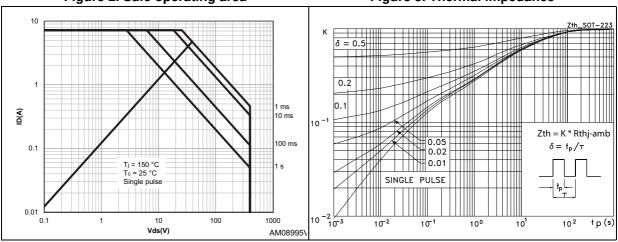


Figure 4. Output characteristics

Figure 5. Transfer characteristics

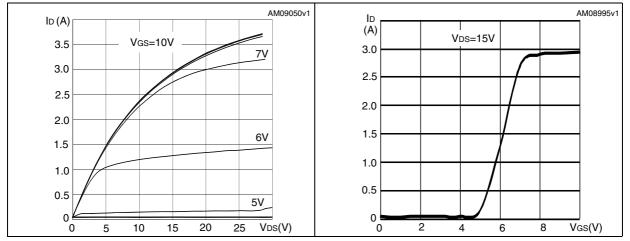
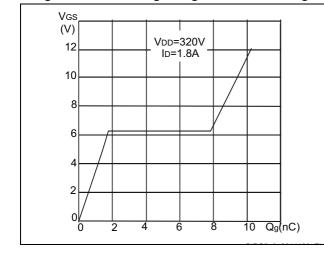
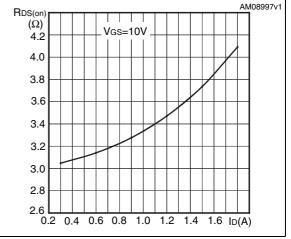




Figure 6. Gate charge vs gate-source voltage

Figure 7. Static drain-source on resistance

577

6/14

0.1

Figure 8. Capacitance variations

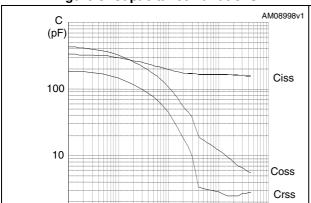
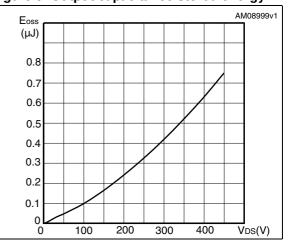
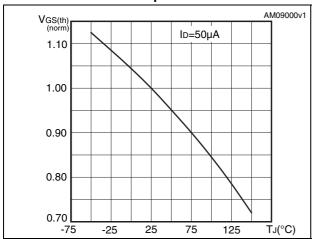


Figure 9. Output capacitance stored energy




Figure 10. Normalized gate threshold voltage vs. temperature

10

100

V_{DS}(V)

Figure 11. Normalized on resistance vs. temperature

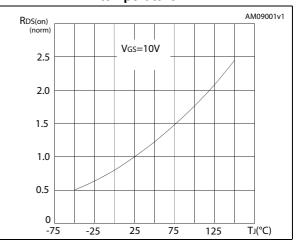
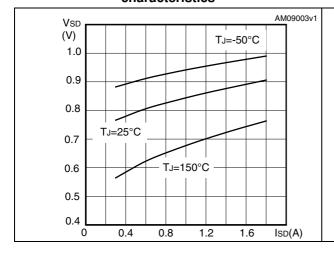
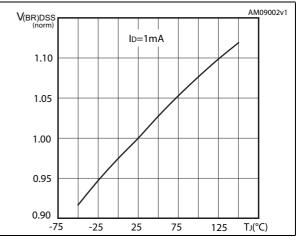
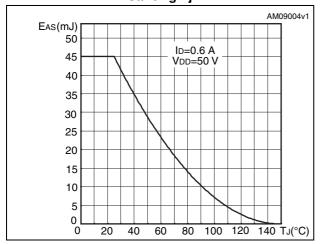




Figure 12. Source-drain diode forward characteristics


Figure 13. Normalized $V_{(BR)DSS}$ vs. temperature

Electrical characteristics STN3N40K3

Figure 14. Maximum avalanche energy vs. starting Tj

8/14

STN3N40K3 Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

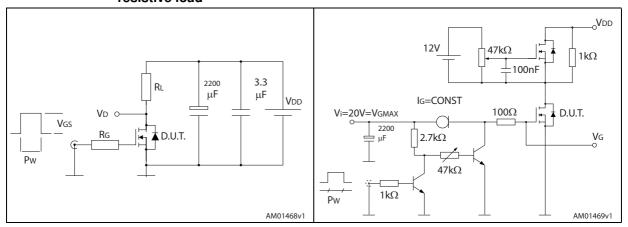


Figure 17. Switching times test circuit for resistive load

Figure 18. Gate charge test circuit

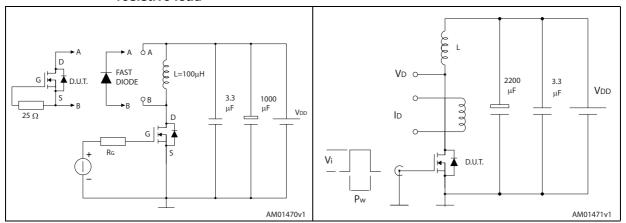
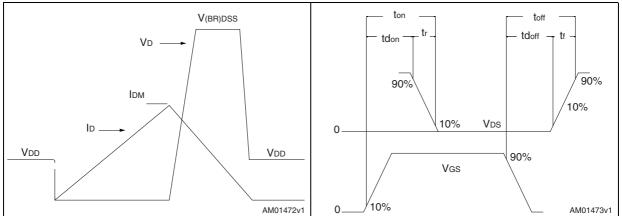



Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

D
B1
1
2
3
0046067_N

Figure 21. SOT-223 mechanical data drawing

Table 8. SOT-223 mechanical data

Dim.		mm				
Dim.	Min.	Тур.	Max.			
А			1.80			
A1	0.02		0.10			
В	0.60	0.70	0.85			
B1	2.9	3.0	3.15			
С	0.24	0.26	0.35			
D	6.30	6.50	6.70			
е		2.30	6.70			
e1		4.60				
E	3.30	3.50	3.70			
Н	6.70	7.0	7.30			
V			10°			

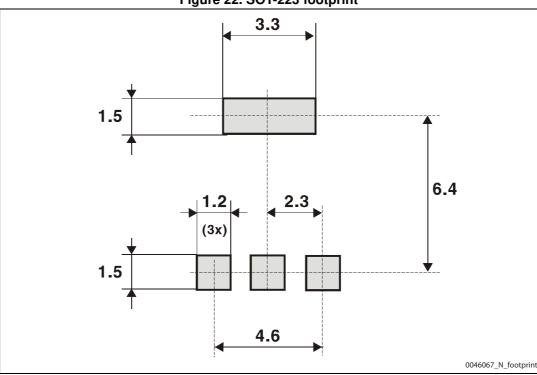


Figure 22. SOT-223 footprint

STN3N40K3 Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
29-Jun-2010	1	First release.
08-Apr-2011	2	Document status promoted from preliminary data to datasheet.
06-Jun-2014	3	Updated silhouette, features and Figure 1: Internal schematic diagram in cover page. Updated Table 2: Absolute maximum ratings, Table 3: Thermal data, and Table 4: On /off states. Updated Figure 2: Safe operating area and Figure 6: Gate charge vs gate-source voltage. Updated Section 4: Package mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID17697 Rev 3 14/14

