

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STN3N45K3

N-channel 450 V - 3.3 Ω typ., 0.6 A Zener-protected, SuperMESH3™ Power MOSFET in a SOT-223 package

Datasheet - production data

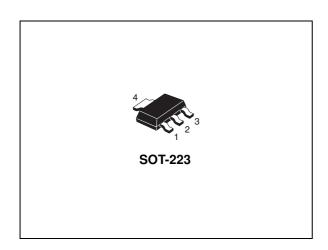
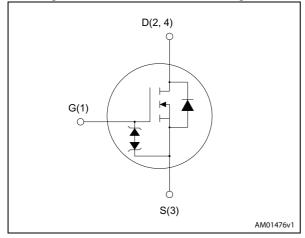



Figure 1. Internal schematic diagram

Features

Order code	V _{DSS}	R _{DS(on)} max	` ' ID	
STN3N45K3	450 V	< 4 Ω	0.6 A	3 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Applications

· Switching applications

Description

This SuperMESH3™ Power MOSFET is the result of improvements applied to STMicroelectronics' SuperMESH™ technology, combined with a new optimized vertical structure. This device boasts an extremely low onresistance, superior dynamic performance and high avalanche capability, rendering it suitable for the most demanding applications.

Table 1. Device summary

Order code	er code Marking Package		Packaging		
STN3N45K3	3N45K3	SOT-223	Tape and reel		

Contents STN3N45K3

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	9
4	Package mechanical data 1	10
5	Packaging mechanical data 1	12
6	Revision history 1	14

STN3N45K3 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage (V _{GS} = 0)	450	V
V _{GS}	Gate- source voltage	± 30	V
I _D	Drain current (continuous) at T _{amb} = 25 °C	0.6	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	2.4	Α
P _{TOT}	Total dissipation at T _{amb} = 25 °C	3	W
I _{AR} (2)	Avalanche current, repetitive or not-repetitive	0.6	Α
E _{AS} (3)	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	45	mJ
dv/dt (4)	Peak diode recovery voltage slope	12	V/ns
Vesd(g-s)	G-S ESD (HBM C = 100 pF, R = 1.5 k Ω)	1000	V
T _{stg}	Storage temperature	-55 to 150	°C
T _j	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-a} ⁽¹⁾	Thermal resistance junction-ambient	37.8	°C/W

^{1.} When mounted on FR-4 board of 1 inch 2 , 2oz Cu, t < 30 sec

^{2.} Pulse width limited by Tj max.

^{3.} Starting Tj = 25 °C, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$.

^{4.} $I_{SD} \leq 0.6 \text{ A}, \text{ di/dt } \leq 400 \text{ A/}\mu\text{s}, V_{DS} \text{ peak } \leq V_{(BR)DSS}, V_{DD} = 80\% V_{(BR)DSS}.$

Electrical characteristics STN3N45K3

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Symbol Parameter Test conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	450			V
I _{DSS}		V _{DS} = 450 V V _{DS} = 450 V, T _C =125 °C			1 50	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 10	μА
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 0.6 A		3.3	4	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	164	-	pF
C _{oss}	Output capacitance	V _{DS} = 50 V, f = 1 MHz, V _{GS} = 0	-	17	-	pF
C _{rss}	Reverse transfer capacitance		-	3	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 360 V, V _{GS} = 0	-	13	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	v _{DS} = 0 to 360 v, v _{GS} = 0	-	18	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	8	-	Ω
Qg	Total gate charge	V _{DD} = 360 V, I _D = 1.8 A,	-	9.5	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	2	-	nC
Q _{gd}	Gate-drain charge	(see <i>Figure 16</i>)	-	6	-	nC

^{1.} $C_{oss\,eg}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

4/15 DocID024888 Rev 1

^{2.} $C_{oss\ eq.}$ energy related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol

 $t_{d(on)}$

 t_{r}

 $t_{d(off)}$

 t_f

17

22

ns

ns

Parameter	Test conditions	Min.	Тур.	Max	Unit
Turn-on delay time		-	6.5	-	ns
Rise time	$V_{DD} = 225 \text{ V}, I_D = 0.9 \text{ A},$ $R_C = 4.7 \Omega, V_{CS} = 10 \text{ V}$	-	5.4	-	ns
	1 NG = 4./ 32. VGS = 10 V				

Table 6. Switching times

Table 7. Source drain diode

(see Figure 15)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		0.6	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		2.4	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 0.6 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time	1.0.4.17/11100.4/	-	175		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 1.8 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 20</i>)	-	550		nC
I _{RRM}	Reverse recovery current	1 1 ₀₀ = 33 1 (333 1 igal 22)	-	6		Α
t _{rr}	Reverse recovery time	$I_{SD} = 1.8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	185		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$	-	600		nC
I _{RRM}	Reverse recovery current	(see Figure 20)	-	6.5		Α

^{1.} Pulse width limited by safe operating area.

Turn-off-delay time

Fall time

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	I_{GS} = ± 1 mA, I_D =0	30	-	-	V

The built-in back-to-back Zener diodes have been specifically designed to enhance not only the device's ESD capability, but also to make them capable of safely absorbing any voltage transients that may occasionally be applied from gate to source. In this respect, the Zener voltage is appropriate to achieve efficient and cost-effective protection of device integrity. The integrated Zener diodes thus eliminate the need for external components.

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

Electrical characteristics STN3N45K3

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

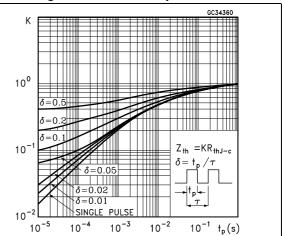


Figure 4. Output characteristics

100

V_{DS}(V)

0.1

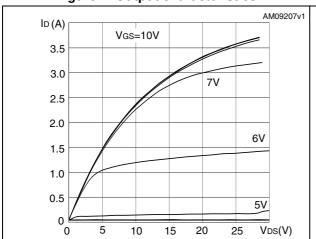


Figure 5. Transfer characteristics

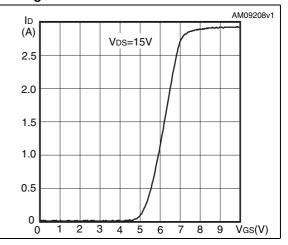


Figure 6. Gate charge vs gate-source voltage

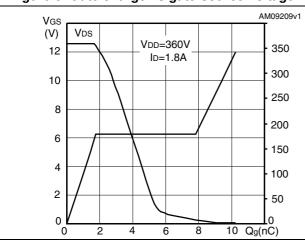
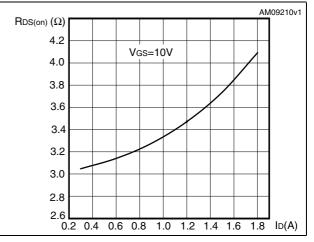



Figure 7. Static drain-source on resistance

57

6/15 DocID024888 Rev 1

Figure 8. Capacitance variations

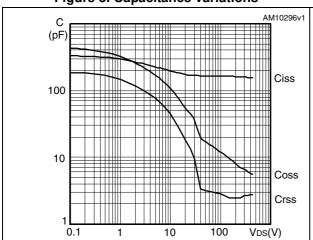


Figure 9. Output capacitance stored energy

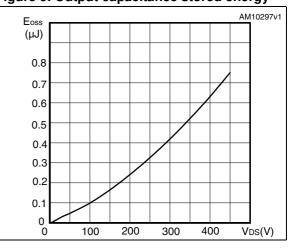
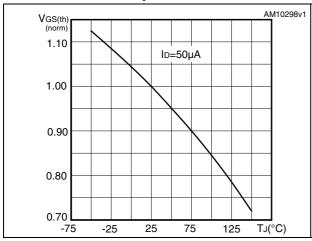



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

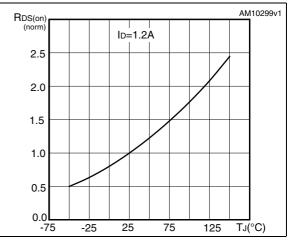
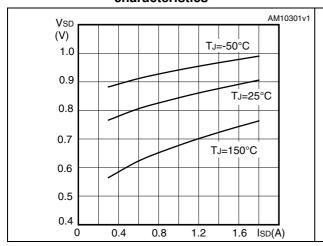
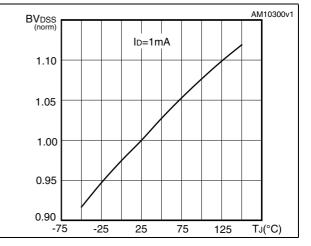
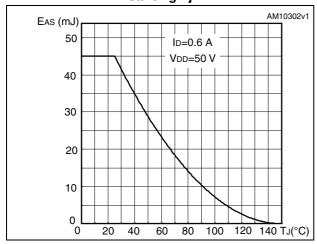




Figure 12. Source-drain diode forward characteristics


Figure 13. Normalized B_{VDSS} vs temperature

Electrical characteristics STN3N45K3

Figure 14. Maximum avalanche energy vs starting Tj

STN3N45K3 Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

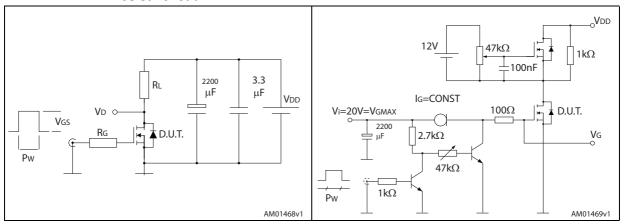


Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped inductive load test circuit

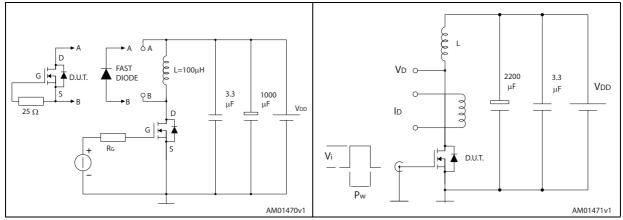
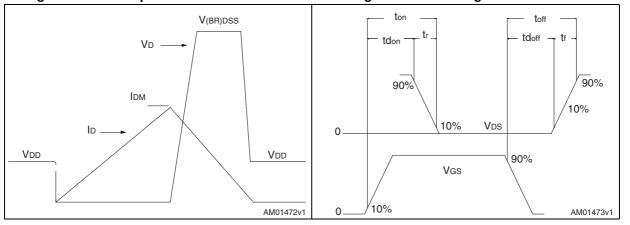



Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform

4 Package mechanical data

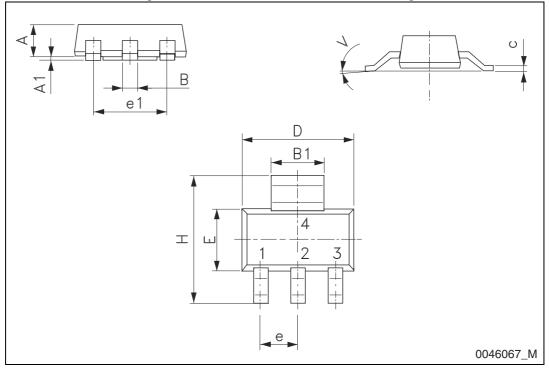
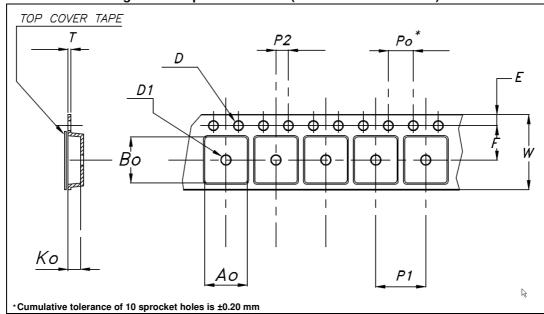

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 9. SOT-223 mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А			1.80
A1	0.02		0.1
В	0.60	0.70	0.85
B1	2.90	3.00	3.15
С	0.24	0.26	0.35
D	6.30	6.50	6.70
е		2.30	
e1		4.60	
E	3.30	3.50	3.70
Н	6.70	7.00	7.30
V			10°

Figure 21. SOT-223 mechanical data drawing



5 Packaging mechanical data

Table 10. SOT-223 tape and reel mechanical data

Таре			Reel				
Dim.		mm	mm		m	m	
Dilli.	Min.	Тур.	Max.	Dim.	Min.	Max.	
A0	6.75	6.85	6.95	Α		180	
В0	7.30	7.40	7.50	N	60		
K0	1.80	1.90	2.00	W1		12.4	
F	5.40	5.50	5.60	W2		18.4	
Е	1.65	1.75	1.85	W3	11.9	15.4	
W	11.7	12	12.3				
P2	1.90	2	2.10	Base qu	antity pcs	1000	
P0	3.90	4	4.10	Bulk qua	antity pcs	1000	
P1	7.90	8	8.10				
Т	0.25	0.30	0.35				
Dφ	1.50	1.55	1.60				
D1¢	1.50	1.60	1.70				

Figure 22. Tape for SOT-223 (dimensions are in mm)

12/15 DocID024888 Rev 1

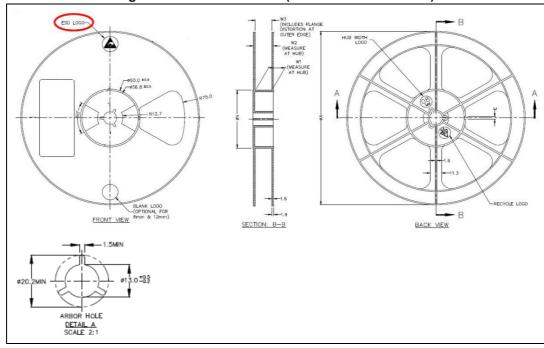


Figure 23. Reel for TO-223 (dimensions are in mm)

Revision history STN3N45K3

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
25-Jun-2013	1	First release. Part number previously included in datasheet DocID17206

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

