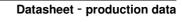
imall

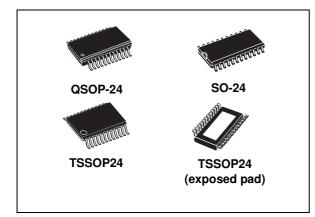
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STP16DP05

Low voltage 16-bit constant current LED sink driver with outputs error detection

Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial data IN/Parallel data OUT
- 3.3 V micro driver-able
- Output current: 5-100 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection 2.5 kV HBM, 200 V MM

Description

The STP16DP05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The device contains a 16-bit serial-in, parallel-out shift register that feeds a 16bit D-type storage register. In the output stage, sixteen regulated current sources were designed to provide 5-100 mA constant current to drive the LEDs. The STP16DP05 features open and short LED detections on the outputs. The STP16DP05 is backward compatible with STP16C/L596.The detection circuit checks 3 different conditions that can occur on the output line: short to GND, short to V_{Ω} or open line. The data detection results are loaded in the shift register and shifted out via the serial line output. The detection functionality is implemented without increasing the pin count number, through a secondary function of the output enable and latch pin (DM1 and DM2 respectively), a dedicated logic sequence allows the device to enter or leave from detection mode. Through an external resistor, users can adjust the STP16DP05 output current, controlling in this way the light intensity of LEDs, in addition, user can adjust LED's brightness intensity from 0% to 100% via OE/DM2 pin. The STP16DP05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz, makes the device suitable for high data rate transmission. The 3.3 V voltage supply is well useful for applications that interface any 3.3 V micro Compared with a standard TSSOP package, the TSSOP exposed pad increases heat dissipation capability by a 2.5 factor.

Order codes	Package	Packaging
STP16DP05MTR	SO-24 (tape and reel)	1000 parts per reel
STP16DP05TTR	TSSOP24 (tape and reel)	2500 parts per reel
STP16DP05XTTR	TSSOP24 exposed pad (tape and reel)	2500 parts per reel
STP16DP05PTR	QSOP-24	2500 parts per reel

DocID13093 Rev 7

Table 1. Device summary

This is information on a product in full production.

1/33

June 2014

Contents

1	Sum	Summary description					
	1.1	Pin connection and description 3					
2	Elec	trical ratings					
	2.1	Absolute maximum ratings 5					
	2.2	Thermal data					
	2.3	Recommended operating conditions 6					
3	Elec	trical characteristics7					
4	Equi	valent circuit and outputs9					
5	Timi	ng diagrams 11					
6	Турі	cal characteristics 14					
7	Dete	ction mode functionality 17					
	7.1	Phase one: "entering in detection mode" 17					
	7.2	Phase two: "error detection" 18					
	7.3	Phase three: "resuming to normal mode" 20					
	7.4	Error detection conditions					
8	Pack	age mechanical data 23					
9	Pack	Packaging mechanical data 30					
10	Revi	sion history					

1 Summary description

Output voltage	Current accuracy		Output current	V	Temperature	
Output voltage	Between bits	Between ICs	Output current	V _{DD}	remperature	
≥ 1.3 V	±1.5%	±5%	20 to 100 mA	3.3 V to 5 V	25 °C	

Table 2. Typical current accuracy

1.1 Pin connection and description

Figure 1. Pin connection

		_			
	GND	C.	1	24	V _{DD}
	SDI	[:	2	23	R-EXT
	CLK	[3	22	SDO
LE -	DM1	Ę.	4	21	OE – DM2
	OUTO	[:	5	20	OUT15
	OUT1	Ę (6	19	OUT14
	OUT2	C :	7	18	OUT13
	OUT3	Ę	8	17	OUT12
	OUT4	Ľ,	9	16	OUT11
	OUT5	C ·	10	15	OUT10
	OUT6	Ę.	11	14	OUT9
	OUT7	C ·	12	13	OUT8
		L	CS151	21	

Note: The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground

Table 3. Pin description

Pin n°	Symbol	Name and function	
1	GND	Ground terminal	
2	SDI	Serial data input terminal	
3	CLK	Clock input terminal	
4	LE-DM1	Latch input terminal - detect mode 1 (see operation principle)	
5-20	OUT 0-15	Output terminal	
21	OE-DM2	Input terminal of output enable (active low) - detect mode 1 (see operation principle)	
22	SDO	Serial data out terminal	

Pin n°	Symbol	Name and function
23	R-EXT	Input terminal of an external resistor for constant current programing
24	V _{DD}	Supply voltage terminal

Table 3. Pin description (continued)

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
Ι _Ο	Output current	100	mA
VI	Input voltage	-0.4 to V _{DD}	V
I _{GND}	GND terminal current	1600	mA
f _{CLK}	Clock frequency	50	MHz

2.2 Thermal data

Table 5. Thermal data

Symbol	Parameter	Value	Unit	
T _{OPR}	Operating temperature range	-40 to +125	°C	
T _{STG}	Storage temperature range	-55 to +150	°C	
		SO-24	42.7	°C/W
	Thermal resistance junction-case	TSSOP24	55	°C/W
R _{thJC}		TSSOP24 ⁽¹⁾ exposed pad	37.5	°C/W
	QSOP-2		55	°C/W

1. The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

2.3 Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage		3.0	-	5.5	V
Vo	Output voltage			-	20	V
Ι _Ο	Output current	OUTn	5	-	100	mA
I _{OH}	Output current	SERIAL-OUT		-	+1	mA
I _{OL}	Output current	SERIAL-OUT		-	-1	mA
V _{IH}	Input voltage		0.7V _{DD}	-	V _{DD} +0.3	V
V _{IL}	Input voltage		-0.3	-	0.3V _{DD}	V
t _{wLAT}	LE\DM1 pulse width		6	-		ns
t _{wCLK}	CLK pulse width		8	-		ns
t _{wEN}	OE\DM2 pulse width	V _{DD} = 3.0 V to 5.0 V	100	-		ns
t _{SETUP(D)}	Setup time for DATA	$v_{\rm DD} = 3.0 \ v \ 10 \ 5.0 \ v$	10	-		ns
t _{HOLD(D)}	Hold time for DATA		5	-		ns
t _{SETUP(L)}	Setup time for LATCH		10	-		ns
f _{CLK}	Clock frequency	Cascade operation ⁽¹⁾		-	30	MHz

Table 6. Recommended operating conditions

1. If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

Electrical characteristics 3

 V_{DD} = 3.3 V to 5 V, T = 25 °C, unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IH}	Input voltage high level		0.7V _{DD}		V _{DD}	V
V _{IL}	Input voltage low level		GND		0.3V _{DD}	V
I _{OH}	Output leakage current	V _{OH} = 20 V			1	μA
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1 mA			0.4	V
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1 mA	$V_{OH} - V_{DD} = -0.4 V$			V
I _{OL1}		V_{O} = 0.3 V, R_{ext} = 3.9 k Ω	4.25	5	5.75	
I _{OL2}	Output current	V_{O} = 0.3 V, R_{ext} = 970 Ω	19	20	21	mA
I _{OL3}	-	V_{O} = 1.3 V, R_{ext} = 190 Ω	96	100	104	
ΔI_{OL1}	Output current error	V_{O} = 0.3 VR _{EXT} = 3.9 k Ω		± 5	± 8	
ΔI_{OL2}	between bit	V_{O} = 0.3 VR _{EXT} = 970 Ω		± 1.5	± 3	%
ΔI_{OL3}	(all output ON)	V_{O} = 1.3 VR _{EXT} =190 Ω		± 1.2	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	KΩ
R _{SIN(down)}	Pull-down resistor		100	200	400	KΩ
I _{DD(OFF1)}	- Supply current (OFF)	R _{EXT} = 970 OUT 0 to 15 = OFF		5	6	
I _{DD(OFF2)}		R _{EXT} = 240 OUT 0 to 15 = OFF		13	14	m 4
I _{DD(ON1)}		R _{EXT} = 970 OUT 0 to 15 = ON		6	7	mA
I _{DD(ON2)}	- Supply current (ON)	R _{EXT} = 240 OUT 0 to 15 = ON		13.5	14.5	
Thermal	Thermal protection (1)			170		°C

Table 7.	. Electrical	characteristics
----------	--------------	-----------------

1. Guaranteed by design (not tested) The thermal protection switches OFF only the outputs current

$V_{DD} = 5 V,$	T = 25	°C, unless	otherwise	specified
-----------------	--------	------------	-----------	-----------

Symbol	Parameter	Te	est conditions	;	Min.	Тур.	Max.	Unit
t _{PLH1}	Propagation delay time, <u>CLK-OU</u> Tn, LE\DM1 = H, \overline{OE} \DM2 = L			V _{DD} = 3.3 V V _{DD} = 5 V	-	40 20	65 30	ns
t	Propagation delay time, LE\DM1 -OUTn,	-		V _{DD} = 3.3 V	-	51	77	ns
t _{PLH2}	\overline{OE} $DM2 = L$			$V_{DD} = 5 V$	-	32	47	113
t _{PLH3}	Propagation delay time, OE\DM2-OUTn,			$V_{DD} = 3.3 V$ $V_{DD} = 5 V$	-	49 27	77 41	ns
	LE\DM1 = H Propagation delay time,			$V_{DD} = 3.3 V$	-	21.5	32	
t _{PLH}	CLK-SDO		$V_{IH} = V_{DD}$ $V_{IL} = GND$ $C_{L} = 10 \text{ pF}$ $I_{O} = 20 \text{ mA}$ $V_{L} = 3.0 \text{ V}$ $R_{EYT} = 1 \text{ K}\Omega$ $B_{L} = 60 \Omega$	$V_{DD} = 5 V$	-	14.5	21.5	ns
	Propagation delay time,	1		V _{DD} = 3.3 V	-	15	25	
t _{PHL1}	$\frac{\text{CLK-OU}\text{Tn}, \text{ LE}\text{DM1} = \text{H},}{\text{OE}\text{DM2} = \text{L}}$			V _{DD} = 5 V	-	11	14.5	ns
	Propagation delay time,	°		V _{DD} = 3.3 V	-	13	20	
t _{PHL2}	LE\DM1 -OUTn, OE\DM2 = L	$R_{EXT} = 1.02$		$V_{DD} = 5 V$	-	9	12.5	ns
+	Propagation delay time, OE\DM2-OUTn,			V _{DD} = 3.3 V	-	11.5	18	
t _{PHL3}	LEDM2 = H			$V_{DD} = 5 V$	-	8.5	12	ns
t _{PHL}	Propagation delay time,			V _{DD} = 3.3 V	-	25.5	38	ns
PHL	CLK-SDO			$V_{DD} = 5 V$	-	17.5	25	110
+.	Output rise time 10~90% of voltage			V _{DD} = 3.3 V	-	34	53.5	ns
t _{ON}	waveform			$V_{DD} = 5 V$	-	12.5	18.5	115
+.	Output fall time 90~10% of voltage			V _{DD} = 3.3 V	-	5.5	8.5	200
t _{OFF}	waveform			$V_{DD} = 5 V$	-	4.5	6.5	ns
t _r	CLK rise time ⁽¹⁾				-		5000	ns
t _f	CLK fall time (1)	1			-		5000	ns

Table 8	Switching	characteristics
Table 0.	Switching	characteristics

1. In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Equivalent circuit and outputs

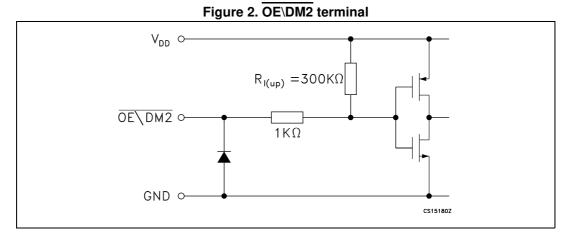
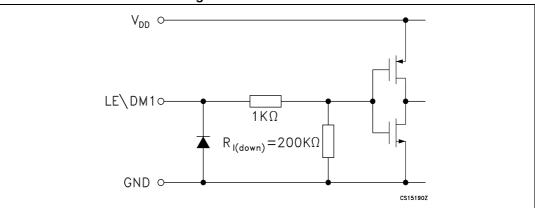
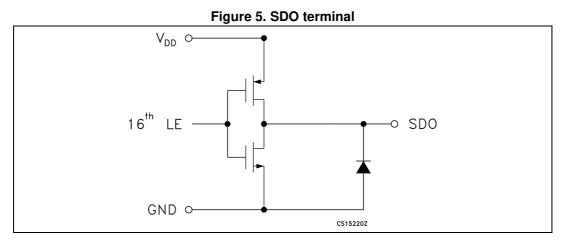
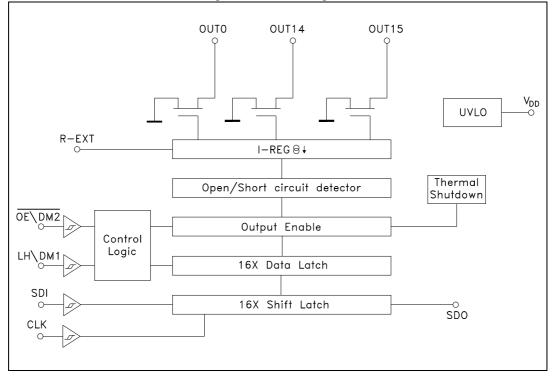
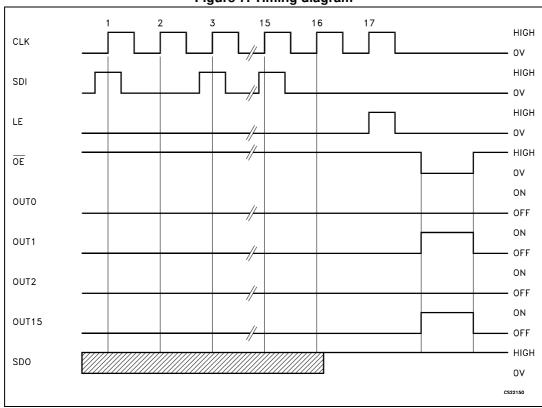


Figure 3. LE\DM1 terminal


Figure 4. CLK, SDI terminal



5 Timing diagrams

CLOCK	LE\DM1	OE\DM2	SERIAL-IN	OUT0 OUT7 OUT15	SDO
Г	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
	L	L	Dn + 1	No change	Dn - 14
Г	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
7	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
7	Х	Н	Dn + 3	OFF	Dn - 13

Table 9. Truth table

Note: OUTn = ON when Dn = H OUTn = OFF when Dn = L

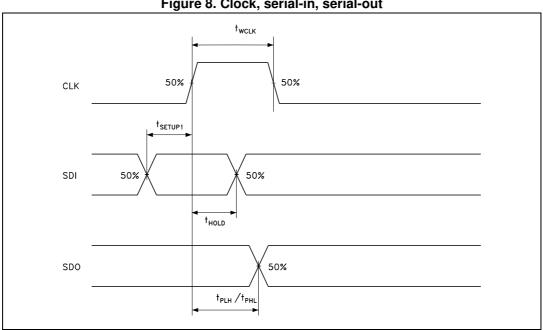


Figure 7. Timing diagram

Note: 1 Latch and output enable are level sensitive and ARE NOT synchronized with rising-or-falling edge of CALK signal.

- 2 When LE terminal is low level, the latch circuits hold previous set of data
- 3 When LE terminal is at high level, the latch circuits refresh new set of data from SDI chain.
- 4 When OE terminal is at low level, the output terminals Out0 to Out15 respond to data in the latch circuits, either '1' for ON or '0' for OFF
- 5 When OE terminal is at high level, all output terminals will be switched OFF.

Figure 8. Clock, serial-in, serial-out

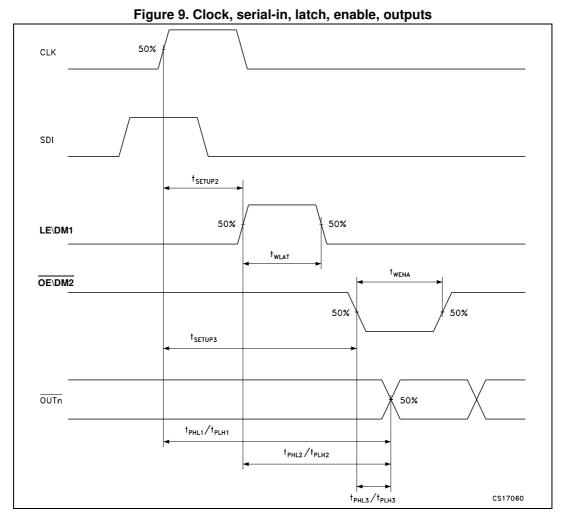
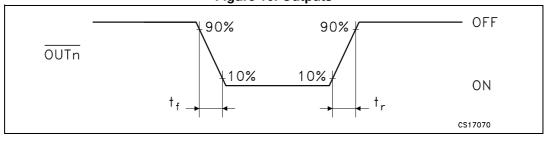
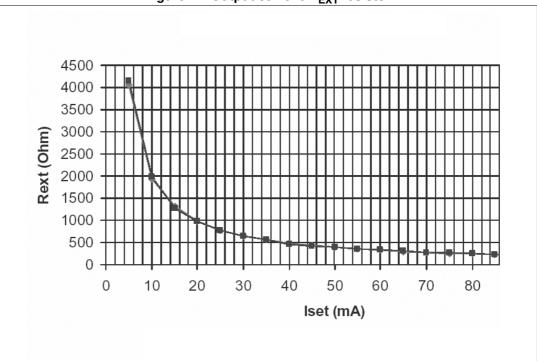




Figure 10. Outputs

6 Typical characteristics

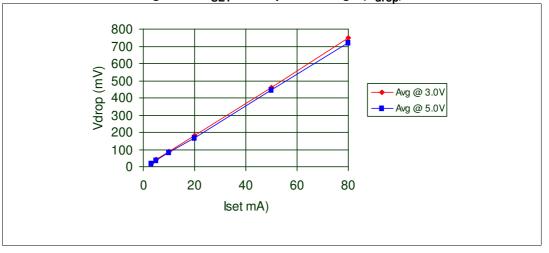
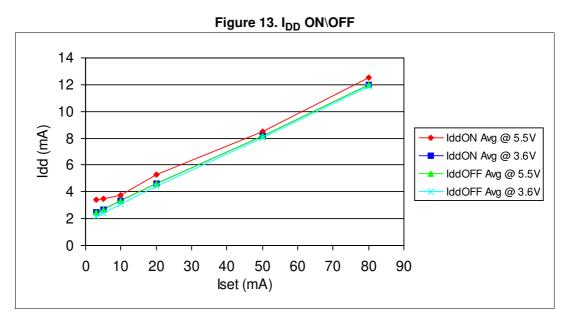

Figure	11	Output	current.	·R	resistor

Table 10. Output current-R _{EXT} resistor					
Rext (Ω)	Output current (mA)				
976	20				
780	25				
652	30				
560	35				
488	40				
433	45				
389	50				
354	55				
325	60				
300	65				
278	70				
259	75				
241	80				
229	85				
215	90				

Conditions:

Temperature = 25 °C, V_{DD} = 3.3 V; 5.0 V, I_{SET} = 3 mA; 5 mA; 10 mA; 20 mA; 50 mA; 80 mA.



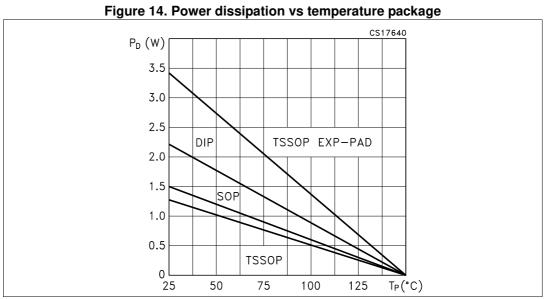
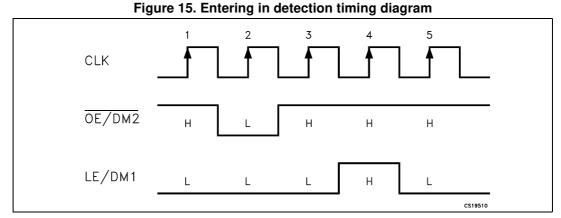


Table 11.	I _{SET} vs	drop	out voltage	(V _{drop})
-----------	---------------------	------	-------------	----------------------

lout (mA)	Avg @ 3.0 V	Avg @ 5.0 V
3	19.33	22.66
5	36.67	40.33
10	77.33	80
20	158.67	157.33
50	406	406
80	692	668

The exposed pad should be soldered to the PBC to realize the thermal benefits.


7 Detection mode functionality

7.1 Phase one: "entering in detection mode"

From the "normal mode" condition the device can switch to the "error mode" by a logic sequence on the $OE \mid DM2$ and LE/DM1 pins as showed in the following table and diagram:

CLK	1°	2 °	3 °	4 °	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	Н	L

Table 12	. Entering	in detection	truth table
----------	------------	--------------	-------------

After these five CLK cycles the device goes into the "error detection mode" and at the 6th rise front of CLK the SDI data are ready for the sampling.

7.2 Phase two: "error detection"

The 16 data bits must be set "1" in order to set ON all the outputs during the detection. The data are latched by LE/DM1 and after that the outputs are ready for the detection process. When the micro controller switches the $\overline{OE \mid DM2}$ to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

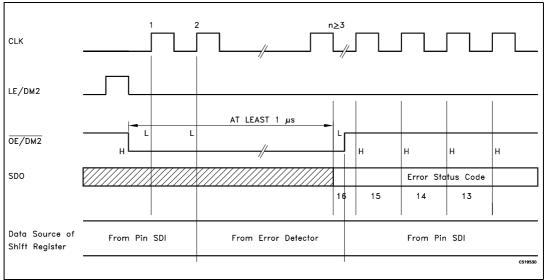


Figure 16. Detection diagram

The LEDs status will be detected at least in 1 microsecond and after this time the microcontroller sets \overline{OE} in HIGH state and the output data detection result will go to the microprocessor via SDO.

Detection mode and normal mode use both the same format data. As soon as all the detection data bits are available on the serial line, the device may go back to normal mode of operation. To re-detect the status the device must go back in normal mode and reentering in error detection mode.

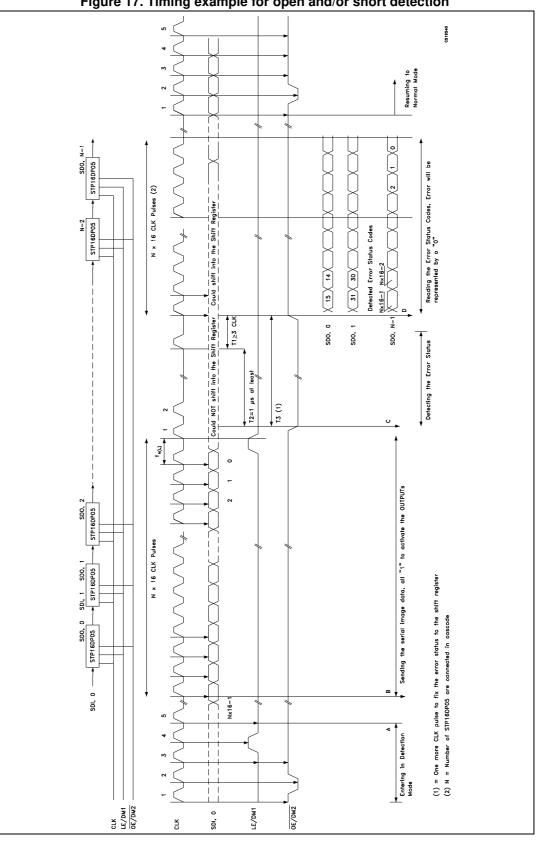


Figure 17. Timing example for open and/or short detection

7.3 Phase three: "resuming to normal mode"

The sequence for re-entering in normal mode is showed in the following table and diagram:

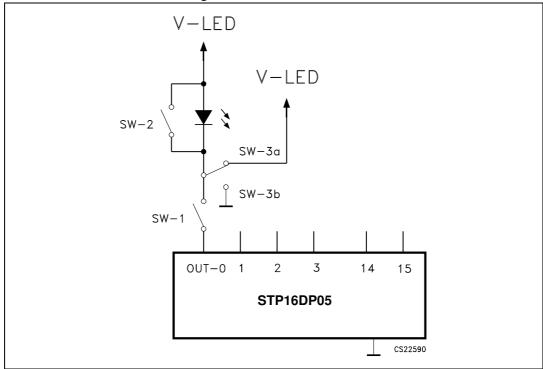
CLK	1°	2 °	3 °	4 °	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	L	L

Figure 18. Resuming to normal mode timing diagram

Note: For proper device operation the "Entering in detection" sequence must be follow by a "resume mode" sequence, it is not possible to insert consecutive equal sequence.

7.4 Error detection conditions

 V_{DD} = 3.3 to 5 V temperature range -40 to 125 °C


Table 13. Detection conditions

SW-1 or SW-3b	Open line or output short to GND detected	==> $I_{ODEC} \le 0.5 \times I_{O}$	No error detected	==> $I_{ODEC} \ge 0.5 \times I_{O}$
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> V _O ≥ 2.4 V	No error detected	==> V _O ≤ 2.2 V

Note: Where: I_O = the output current programmed by the R_{EXT}, I_{ODEC} = the detected output current in detection mode

Figure 19. Detection circuit

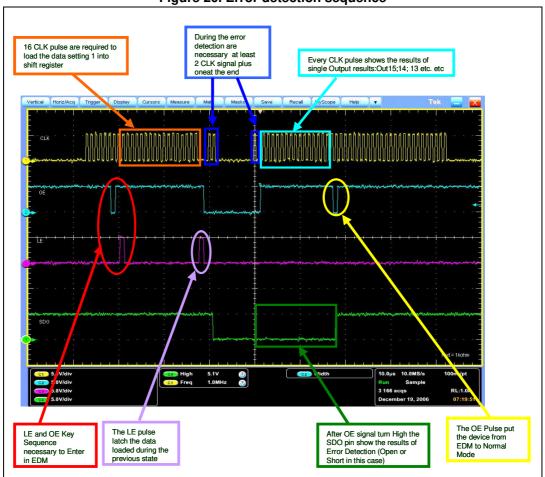


Figure 20. Error detection sequence

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

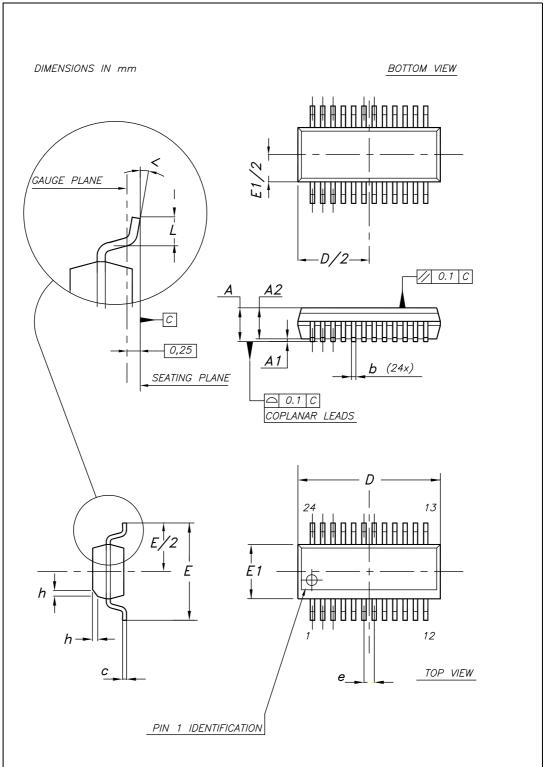


Figure 21. QSOP-24 package dimensions

DocID13093 Rev 7

Table 14. QSOF-24 mechanical data			
Dim.	mm.		
	Min	Тур	Мах
А	1.54	1.62	1.73
A1	0.1	0.15	0.25
A2		1.47	
b	0.31	0.2	
С	0.254	0.17	
D	8.56	8.66	8.76
E	5.8	6	6.2
E1	3.8	3.91	4.01
е		0.635	
L	0.4	0.635	0.89
h	0.25	0.33	0.41
<	8°	0°	

Table 14. QSOP-24 mechanical data

