imall

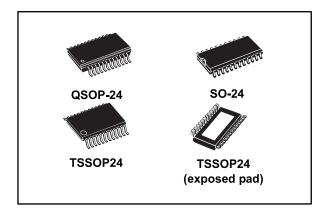
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STP16DPPS05

Low voltage 16-bit constant current LED sink driver with output error detection and auto power-saving

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial data IN/parallel data OUT
- Auto power-saving
- 3.3 V MCU-driving capability
- Output current: 3 to 40 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection: 2 kV HBM, 200 V MM

Description

The STP16DPPS05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The device features a 16bit serial-in, parallel-out shift register that feeds a 16-bit D-type storage register. In the output stage, sixteen regulated current sources are designed to provide 3 to 40 mA of constant current to drive the LEDs. The STP16DPPS05 features open and short LED detection on the outputs. The detection circuit checks for 3 different conditions that can occur on the output line: short to GND, short to Vo or open line. The data detection results are loaded in the shift registers and shifted out via the serial line output. The detection functionality is implemented without increasing the pin count, through a secondary function of the output enable and latch pin (DM1 and DM2 respectively). A dedicated logic sequence allows the device to enter or exit from detection mode. The STP16DPPS05 output current can be adjusted through an external resistor to control the light intensity of the LEDs. LED brightness is adjustable from 0% to 100%

via the OE/DM2 pin.

The auto power-shutdown and auto power-ON feature allows the device to save power with no external intervention. The STP16DPPS05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high 30 MHz clock frequency makes the device suitable for high data rate transmission. The 3.3 V supply is well suited for applications which interface a 3.3 V MCU. Compared to a standard TSSOP package, the TSSOP with exposed pad increases heat dissipation capability by a factor of 2.5.

Table 1: Device summary							
Order code	Package	Packing					
STP16DPPS05MTR	SO-24 (tape and reel)	1000 parts per reel					
STP16DPPS05TTR	TSSOP24 (tape and reel)	2500 parts per reel					
STP16DPPS05XTTR	TSSOP24 exposed pad (tape and reel)	2500 parts per reel					
STP16DPPS05PTR	QSOP-24	2500 parts per reel					

April 2017

DocID15817 Rev 4

This is information on a product in full production.

Co	ntents		
1	Summa	ry description	3
	1.1	Pin connection and description	3
2	Electric	al ratings	4
	2.1	Absolute maximum ratings	4
	2.2	Thermal data	4
	2.3	Recommended operating conditions	5
3	Electric	al characteristics	6
4	Equival	ent circuit and outputs	8
5	Timing	diagrams	11
6	Typical	characteristics	14
7		etection mode functionality	
	7.1	Phase one: entering error detection mode	
	7.2	Phase two: error detection	
	7.3	Phase three: resuming normal mode	21
	7.4	Error detection conditions	21
	7.5	Auto power-saving	23
8	Packag	e information	25
	8.1	QSOP-24 package information	26
	8.2	SO-24 package information	
	8.3	TSSOP24 package information	29
	8.4	TSSOP exposed pad package information	31
	8.5	TSSOP24, TSSOP24 exposed pad and	
		SO-24 packing information	33
9	Revisio	n history	35

1 Summary description

Table 2: Typical current accuracy						
	Current accuracy		Output current	VDD	Temperature	
Output voltage	Between bits	Between ICs	Output current	V DD	remperature	
≥ 1.3 V	± 1%	± 2%	5 to 40 mA	3.3 V to 5 V	25 °C	

1.1 Pin connection and description

Figure 1: Pin connection						
GND [24] V _{DD}				
SDI [2	23] R-EXT				
CLK [3	22 SDO				
LE/DM1 [4	21 OE/DM2				
ουτο [5	20 0UT15				
0UT1 [6	19 0UT14				
OUT2 [7	18 0UT13				
OUT3 [8	17 0UT12				
OUT4 [16 0UT11				
OUT5 [15 0UT10				
OUT6 [14 0UT9				
0UT7 [13] OUT8				
	CS15	121	GIPD280920150957MT			

The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3: Pin description

Pin n°	Symbol	Name and function		
1	GND	Ground terminal		
2	SDI	Serial data input terminal		
3	CLK	Clock input terminal		
4	LE/DM1	atch input terminal - detect mode 1 (see operation principle)		
5-20	OUT 0-15	Output terminal		
21	OE/DM2	Input terminal of output enable (active low) - detect mode 1 (see operation principle)		
22	SDO	Serial data out terminal		
23	R-EXT	Input terminal for an external resistor for constant current programming		
24	V _{DD}	Supply voltage terminal		

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the ratings listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other condition above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
lo	Output current		mA
VI	Input voltage	-0.4 to V _{DD}	V
Ignd	IGND GND terminal current		mA
f _{CLK}	Clock frequency	50	MHz
TJ	Junction temperature range (1)	-40 to + 170	°C

Table 4: Absolute	maximum ratings
-------------------	-----------------

Notes:

⁽¹⁾ Such absolute value is based on the thermal shutdown protection.

2.2 Thermal data

Table 5: Thermal data

Symbol	Parameter		Value	Unit				
TA	Operating free-air temperature range		-40 to +125	°C				
T _{J-OPR}	Operating thermal junction temperature ra	nge	-40 to +150					
Tstg	Storage temperature range	-55 to +150	°C					
		SO-24	42.7	°C/W				
		TSSOP24	55	°C/W				
R _{thJA}	Thermal resistance junction-ambient (1)	TSSOP24 ⁽²⁾	37.5	°C/W				
		exposed pad	57.5	0/10				
		QSOP-24	55	°C/W				

Notes:

⁽¹⁾ According with JEDEC standard 51-7B.

⁽²⁾ The exposed pad should be soldered directly to the PCB to obtain the thermal benefits.

2.3 Recommended operating conditions

Table 6: Recommended	l operating	conditions
----------------------	-------------	------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage		3.0	-	5.5	V
Vo	Output voltage			-	20	V
lo	Output current	OUTn	3	-	40	mA
Іон	Output current	SERIAL-OUT		-	+1	mA
IOL	Output current	SERIAL-OUT		-	-1	mA
VIH	Input voltage		$0.7 V_{DD}$	-	V _{DD}	V
VIL	Input voltage		-0.3	-	0.3 V _{DD}	V
t _{wLAT}	LE/DM1 pulse width		20	-		ns
twclk	CLK pulse width		10	-		ns
t _{wEN}	OE/DM2 pulse width	V _{DD} = 3.0 V to 5.0 V	100	-		ns
tsetup(d)	Setup time for DATA		8	-		ns
thold(d)	Hold time for DATA		5	-		ns
t _{SETUP(L)}	Setup time for LATCH		8	-		ns
fclк	Clock frequency	Cascade operation (1)		-	30	MHz

Notes:

 $^{(1)}$ If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

3 Electrical characteristics

 V_{DD} = 3.3 V to 5 V, T_{A} = 25 °C, unless otherwise specified.

Table 7: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VIH	Input voltage high level		0.7 V _{DD}		V _{DD}	V
VIL	Input voltage low level		GND		0.3 V _{DD}	V
I _{ОН}	Output leakage current	V _{OH} = 20 V			1	μA
Vol	Output voltage (serial-OUT)	I _{OL} = 1 mA			0.4	V
Vон	Output voltage (serial-OUT)	I _{OH} = -1 mA	V _{DD} -0.4 V			V
I _{OL1}		$V_{O} = 0.3 \text{ V}, \text{ R}_{ext} = 4 \text{ k}\Omega$	4.75	5	5.25	
IOL2	Output current	$V_{O} = 0.3 \text{ V}, \text{ R}_{ext} = 1 \text{ k}\Omega$	19	20	21	
I _{OL3}	1	$V_{O} = 1.3 \text{ V}, \text{ R}_{ext} = 497 \Omega$	38	40	42	mA
Δl _{OL1}		$V_{O} = 0.3 \text{ V}, I_{O} = 5 \text{ mA}$ $R_{EXT} = 4 \text{ k}\Omega$		± 1	± 5	
Δlol2	Dutput current error between bit (all output ON)	V _O = 0.3 V, I _O = 20 mA R _{EXT} = 980 Ω		± 0.5	± 3	%
Δlol3		V _O = 1.3 V, I _O = 40 mA R _{EXT} = 490 Ω		± 0.5	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	kΩ
RSIN(down)	Pull-down resistor		100	200	400	kΩ
I _{DD(OFF1)}		REXT = 1 kΩ, $I_{OUT} = 20 \text{ mA},$ OUT 0 to 15 = OFF		5.4	7.5	mA
I _{DD(OFF2)}	- Supply current (OFF)	R _{EXT} = 497 Ω, I _{OUT} = 40 mA OUT 0 to 15 = OFF		8.0	9.5	
IDD(ON1)	Supply ourrant (ON)	$R_{EXT} = 1 k\Omega$, I _{OUT} = 20 mA, OUT 0 to 15 = ON		5.5	7.5	
Idd(on2)	- Supply current (ON)	R _{EXT} = 497 Ω, I _{OUT} = 40 mA OUT 0 to 15 = ON		8.1	9.5	
Thermal	Thermal protection			170		°C

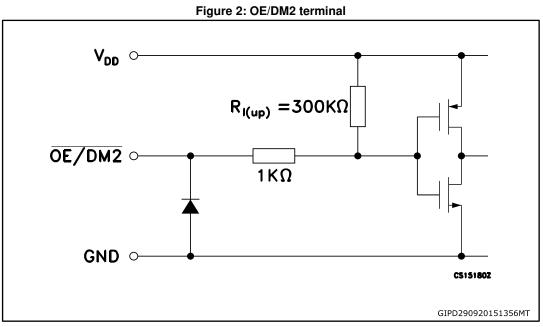
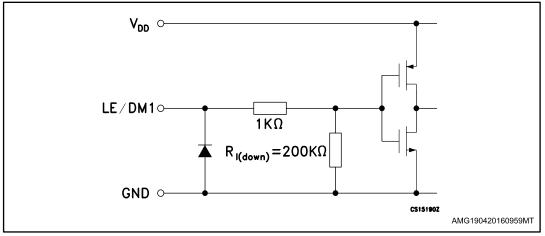
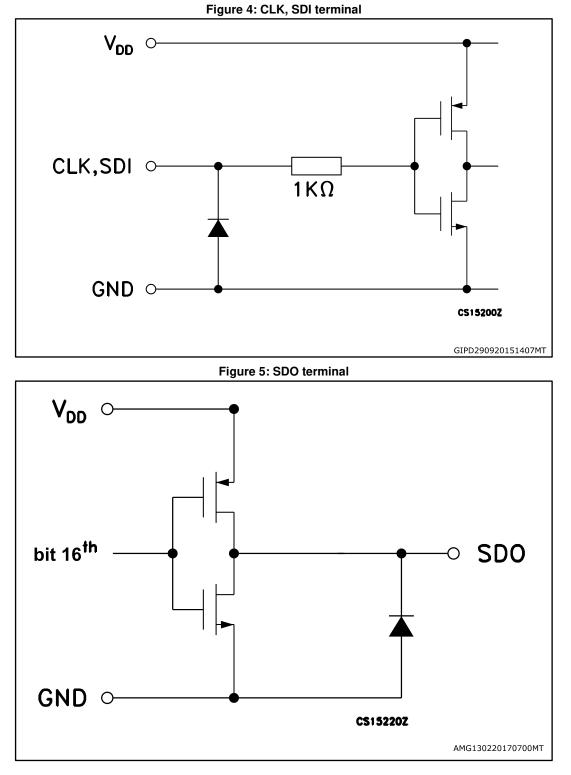
Table 8: Switching characteristics										
Symbol	Parameter	٦	Test condition	IS	Min.	Тур.	Max.	Unit		
	Propagation delay time,			V _{DD} = 3.3 V		53.5	86.5			
tPLH1	CLK- OUTn , LE/DM1 = H,					00	40.5	ns		
	OE/DM2 = L		$V_{DD} = 5 V$		32	46.5				
	Propagation delay time,			V _{DD} = 3.3 V		48	75.5			
t _{PLH2}	LE/DM1- OUTn ,							ns		
	OE/DM2 = L			$V_{DD} = 5 V$		30	43	_		
	Propagation delay time,			V _{DD} = 3.3 V		71.5	118			
t _{PLH3}	OE/DM2 - OUTn , LE = H			V _{DD} = 5 V		43	62	ns		
	Propagation delay time,			V _{DD} = 3.3 V	15	21	31			
t PLH	CLK-SDO			$V_{DD} = 5 V$	11	15	21	ns		
	Propagation delay time,	$V_{IH} = V_{DD}$ $V_{IL} = GND$ $I_{O} = 20 \text{ mA}$ $R_{ext} = 1 \text{ K}\Omega$	Van	V _{DD} = 3.3 V		27.5	39			
tphl1	$CLK-\overline{OUTn}, LE/DM1 = H,$ $\overline{OE/DM2} = L$		$\label{eq:VIL} \begin{array}{ll} V_{IL} = GND & C_L = 10 \ pF \\ I_O = 20 \ mA & V_L = 3.0 \ V \end{array}$	$V_{DD} = 5 V$		22	30.5	ns		
	Propagation delay time,		$_t$ = 1 KΩ R _L = 60 Ω	V _{DD} = 3.3 V		11.5	17.5			
tphl2	LE/DM1 -OUTn , OE/DM2 = L						$V_{DD} = 5 V$		8	11.5
	Propagation delay time,			V _{DD} = 3.3 V		24	33.5			
tphl3	OE/DM2 - OUTn , LE/DM1 = H			V _{DD}	$V_{DD} = 5 V$		21	28.5	ns	
	Propagation delay time,			V _{DD} = 3.3 V	17.5	24	36			
t PHL	CLK-SDO			$V_{DD} = 5 V$	12.5	17	25	ns		
ton	Output rise time 10~90% of			$V_{DD} = 3.3 V$		29	54	ns		
UN	voltage waveform			$V_{DD} = 5 V$		10	17	115		
toff	Output fall time 90~10% of			V _{DD} = 3.3 V		4.5	6	ns		
u.	voltage waveform			$V_{DD} = 5 V$		3.5	5			
tr	CLK rise time ⁽¹⁾						5000	ns		
tr	CLK fall time ⁽¹⁾						5000	ns		

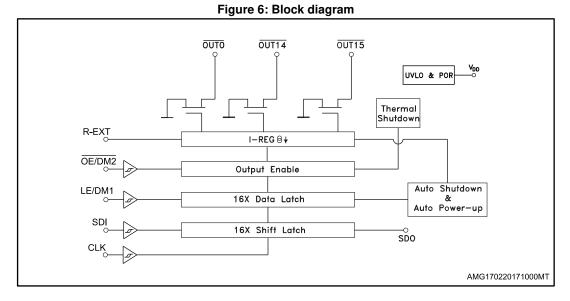
 V_{DD} = 3.3 V to 5 V, T_{A} = 25 °C, unless otherwise specified.

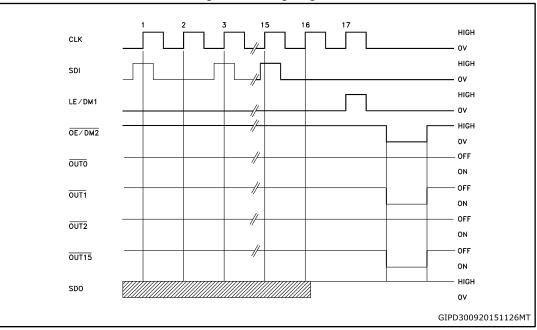
Notes:

⁽¹⁾ In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Equivalent circuit and outputs


Figure 3: LE/DM1 terminal



5 Timing diagrams

CLOCK	LE/DM1	OE/DM2	SERIAL-IN	OUT0 OUT7 OUT15	SDO
_ -	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
_ -	L	L	Dn + 1	No change	Dn - 14
_ -	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
- _	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
- _	Х	Н	Dn + 3	OFF	Dn - 13

OUTn = ON when Dn = H OUTn = OFF when Dn = L.

Figure 7: Timing diagram

able O. Touth table

1 Latch and output enable terminals are level-sensitive and are not synchronized with rising or falling edge of LE/DM1 signal.

2 When LE/DM1 terminal is low level, the latch circuit holds previous set of data.

3 When LE/DM1 terminal is high level, the latch circuit refreshes new set of data from SDI chain.

4 When OE/DM2 terminal is at low level, the output terminals Out 0 to Out 15 respond to data in the latch circuits, either '1' for ON or '0' for OFF.

5 When OE/DM2 terminal is at high level, all output terminals are switched OFF.

DocID15817 Rev 4

Timing diagrams

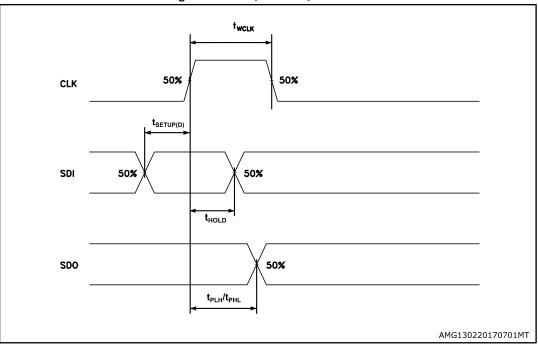
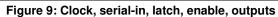

STP16DPPS05

Table 10: Enable IO: shutdown truth table								
CLOCK	LE/DM1	SDI ₀ SDI ₇ SDI ₁₅	SH	Auto power-up	OUTn			
_ -	Н	All = L	Active	Not active (1)	OFF			
_ -	L	No change	No change	No change	No change			
_ -	Н	One or more = H	Not active	Active	X ⁽²⁾			


Notes:

 $^{\left(1\right) }$ At power-up, the device starts in shutdown mode.

(2) Undefined.

Figure 8: Clock, serial-in, serial-out

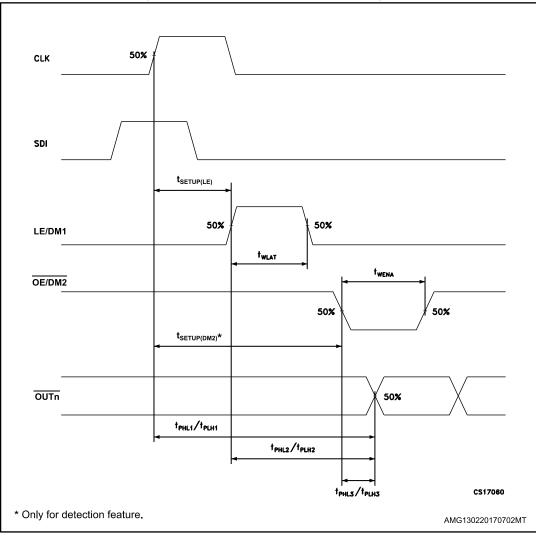
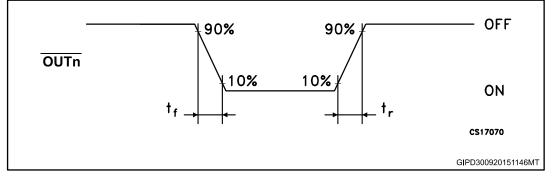
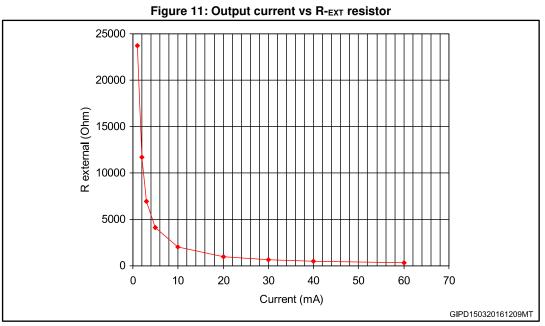




Figure 10: Outputs

6 Typical characteristics

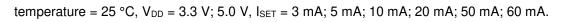


Table 11: Output current vs R-EXT resistor

R- _{EXT} (Ω)	Output current (mA)				
23700	1				
11730	2				
6930	3				
4090	5				
2025	10				
1000	20				
667	30				
497	40				
331	60				

Conditions:

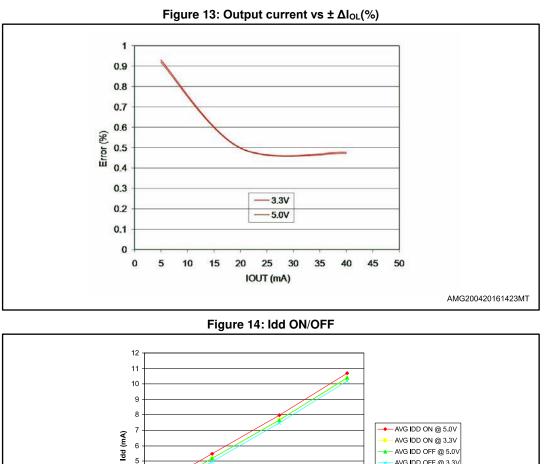
lout (mA)	Avg (mV) @ 3.3 V	Avg (mV) @ 5.0 V
3	36	37
5	71	72
10	163	163
20	346	347
40	724	726
60	1080	1110

Typical characteristics

AVG IDD OFF @ 5.0V

AVG IDD OFF @ 3.3V

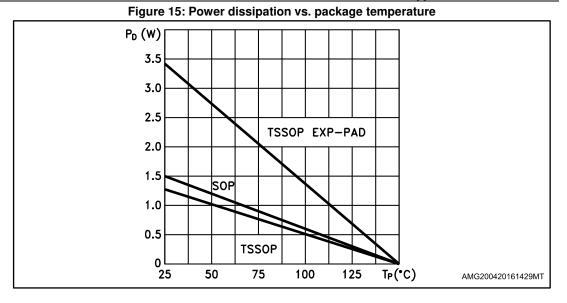
AMG200420161425MT


.

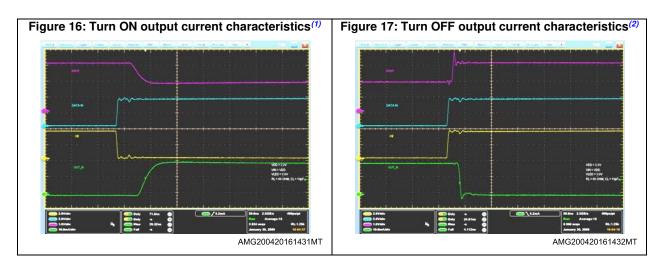
6

5

0


5 10 15 20 25 30 35 40 45 50 55 60 65

lset (mA)


STP16DPPS05

Typical characteristics

3

The exposed pad should be soldered to the PCB to obtain the thermal benefits.

Notes:

⁽¹⁾ The reference level for the T_{ON} characteristics is 50% of OE/DM2 signal and 90% of output current.

⁽²⁾ The reference level for the T_{OFF} characteristics is 50% of OE/DM2 signal and 10% of output current.

Electrical conditions: Vdd = 3.3 V, Vin = Vdd, Vled = 3.0 V, RL = 60 Ω , CL = 10 pF Ch1 (Yellow) = $\overline{OE/DM2}$, Ch2 (Blue) = SDI, Ch3 (Purple) = VOUT, Ch4 (Green) = OUT

57


7 Error detection mode functionality

7.1 Phase one: entering error detection mode

From the "normal mode" condition the device can switch to "error mode" by a logic sequence on the OE/DM2 and LE/DM1 pins, as shown in the following table and diagram:

Table 13. Entering error detection mode - truth table						
CLK	1°	2 °	3°	4 °	5°	
OE/DM2	н	L	Н	Н	Н	
LE/DM1	L	L	L	Н	L	

Table 13: Entering error detection mode - truth table

Figure 18: Entering in detection timing diagram

After these five CLK cycles, the device goes into "error detection mode" and at the rising edge of the 6th CLK cycle, the SDI data are ready for sampling.

7.2 Phase two: error detection

The 16 data bits must be set to "1" in order for all the outputs to be ON during error detection. The data are latched by LE/DM1, after which the outputs are ready for the detection process. When the microcontroller switches the $\overline{OE/DM2}$ to LOW, the device drives the LEDs to analyze if an OPEN or SHORT condition has occurred.

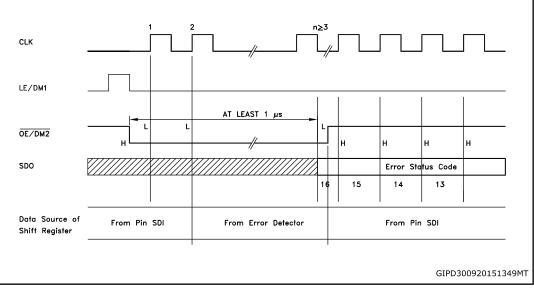
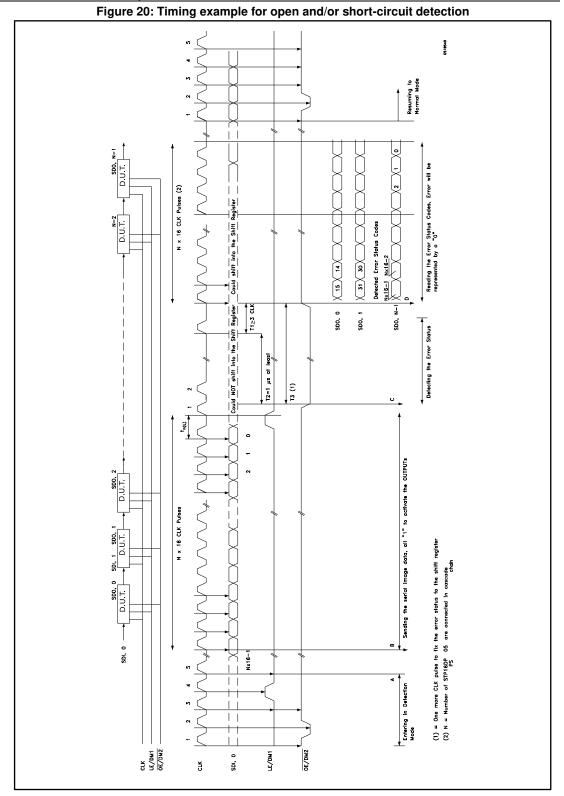



Figure 19: Detection diagram

The status of the LEDs is detected in at least 1 microsecond, and after this period the microcontroller sets $\overrightarrow{OE/DM2}$ to HIGH state and the output data detection result is sent to the microcontroller via SDO. Error detection mode and normal mode both use the same data format. As soon as all the detection data bits are available on the serial line, the device may return to normal mode of operation. To re-detect the status, the device must first return to normal mode and reenter error detection mode.

Error detection mode functionality

DocID15817 Rev 4

7.3 Phase three: resuming normal mode

The sequence for reentering normal mode is shown in the following table:

CLK	1 °	2 °	3 °	4 °	5°	
OE/DM2	Н	L	Н	Н	Н	
LE/DM1	L	L	L	L	L	

For proper device operation, the "entering error detection" sequence must be followed by a "resume mode" sequence, it is not possible to insert consecutive equal sequences.

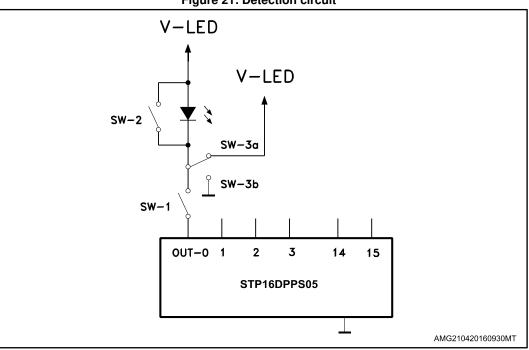
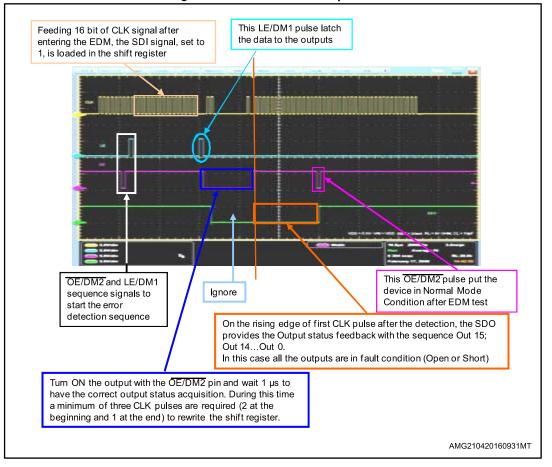

7.4 Error detection conditions

Table	15:	Detection	conditions
-------	-----	-----------	------------

Configuration	Detect mode	Detection results			
SW-1 or SW-3b	Open line or output short to GND detected	==> I _{ODEC} ≤ 0.5 x I _O	No error detected	==> I _{ODEC} ≥ 0.5 x I _O	
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> V₀ ≥ 2.6 V	No error detected	==> $V_0 \le 2.3 V$	

Where: I_0 = the output current programmed by the R-EXT, I_{ODEC} = the detected output current in detection mode.


Figure 21: Detection circuit

DocID15817 Rev 4

Error detection mode functionality


STP16DPPS05

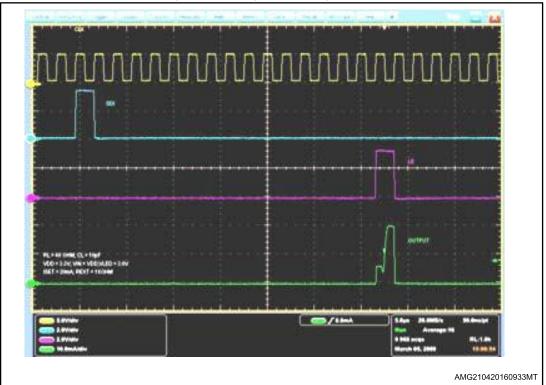
7.5 Auto power-saving

The auto power-saving feature minimizes the quiescent current if no active data is detected on the latches and auto powers-up the device as the first active data is latched.

Conditions:

Temp. = 25 °C, Vdd = 3.3 V, Vin = Vdd, VLed = 3.0 V, Iset = 20 mA

Ch1 (yellow) = CLK, Ch2 (blue) = SDI, Ch3 (purple) = LE/DM1, Ch4 (green) = IDD


Idd consumption:

Idd (normal operation) = 2.93 mA

Idd (shutdown condition) = 170 μ A

Figure 24: Auto power-saving feature

Conditions:

Temp. = 25 °C, Vdd = 3.3 V, Vin = Vdd, VLed = 3.0 V, Iset = 20 mA Ch1 (yellow) = CLK, Ch2 (blue) = SDI, Ch3 (purple) = LE/DM1, Ch4 (green) = IDD

When the device goes from auto power-saving to normal operating condition, the first output that switches ON shows the T_{ON} condition as seen in the plot above.

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

