

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STP26N60M2, STW26N60M2

N-channel 600 V, 0.14 Ω typ., 20 A MDmesh™ M2 Power MOSFETs in TO-220 and TO-247 packages

Datasheet - production data

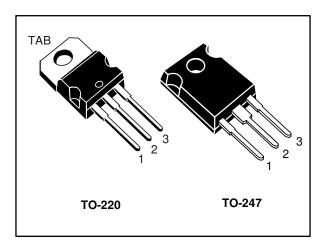
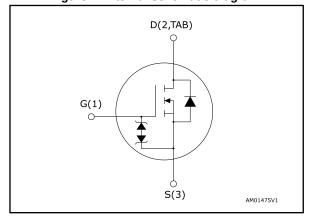



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	Ι _D	P _{TOT}
STP26N60M2	CEO V	0.465.0	00.4	100 \
STW26N60M2	650 V	0.165 Ω	20 A	169 W

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

These devices are N-channel Power MOSFETs developed using MDmesh™ M2 technology. Thanks to their strip layout and improved vertical structure, these devices exhibit low on-resistance and optimized switching characteristics, rendering them suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STP26N60M2	OCNICOMO	TO-220	Tuba
STW26N60M2	26N60M2	TO-247	Tube

Contents

1	Electric	eal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	TO-220 type A package information	11
	4.2	TO-247 package information	13
5	Revisio	on history	15

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
l _a	Drain current (continuous) at T _{case} = 25 °C	20	Α
ID	Drain current (continuous) at T _{case} = 100 °C	13	A
I _{DM} ⁽¹⁾	Drain current (pulsed)	80	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	169	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/IIS
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	-55 to 150	C

Notes:

Table 3: Thermal data

Cumbal	Parameter	Va	Unit		
Symbol	Farameter	TO-220	TO-247	Unit	
R _{thj-case}	Thermal resistance junction-case	tance junction-case 0.74		°C/W	
R _{thj-amb}	Thermal resistance junction-ambient	62.5 50		°C/VV	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	3.8	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	250	mJ

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ $I_{SD} \leq 20$ A, di/dt=400 A/µs; $V_{DS(peak)} < V_{(BR)DSS}, \ V_{DD} = 80\% \ V_{(BR)DSS}.$

 $^{^{(3)}}$ V_{DS} \leq 480 V.

 $^{^{\}left(1\right)}$ Pulse width limited by $T_{jmax}.$

 $^{^{(2)}}$ starting $T_j = 25~^{\circ}C,~I_D = I_{AR},~V_{DD} = 50~V.$

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10 A		0.14	0.165	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1360	1	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	88	1	pF
C_{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2	ı	į.
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	-	124	ı	pF
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	4	1	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 20 \text{ A},$	-	34	1	
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 17: "Test circuit for gate charge	-	5.6	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	16.3	-	

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A R}_G = 4.7 \Omega,$	1	20.2	1	
t _r	Rise time	V _{GS} = 10 V (see <i>Figure 16: "Test</i>	-	8	-	
t _{d(off)}	Turn-off delay time	circuit for resistive load switching times" and Figure 21: "Switching	-	66	-	ns
t f	Fall time	time waveform")	1	10	1	

 $^{^{(1)}\}mbox{Defined}$ by design, not subject to production test.

 $^{^{(1)}}$ $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 20 A	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	360		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 18: "Test circuit for inductive load	-	5		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	27		Α
t _{rr}	Reverse recovery time	$I_{SD} = 20 \text{ A}, di/dt = 100 \text{ A/}\mu\text{s},$	-	556		ns
Qrr	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 18: "Test circuit for	-	8		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	29		Α

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

10⁰

10⁻¹

10⁻¹

2.1 Electrical characteristics (curves)

10 ms

 $\overline{\mathsf{V}_{\mathsf{DS}}}(\mathsf{V})$

Figure 2: Safe operating area for TO-220

ID GIPG210715MQ6WPSOA

(A) 10 µs
100 µs
1 ms

 T_j = 150 °C T_c = 25 °C single pulse

10¹

10²

Figure 3: Thermal impedance for TO-220 K $\delta=0.5$ 0.2 0.1 $Z_{th}=k R_{th,J-c}$ $\delta=t_p/T$ SINGLE PULSE t_p/T

Figure 4: Safe operating area for TO-247

10°

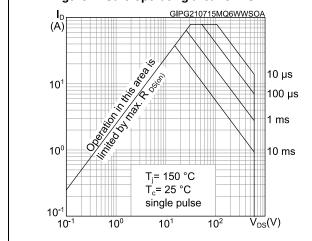


Figure 5: Thermal impedance for TO-247

10⁻³

 10^{-2}

10⁻¹ t_p(s)

10⁻⁵

10-4

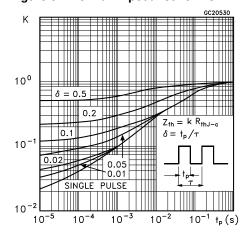
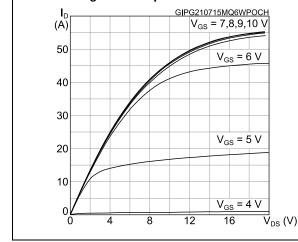
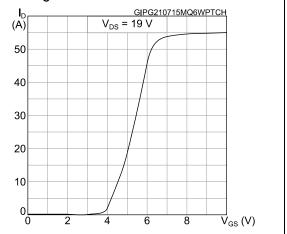
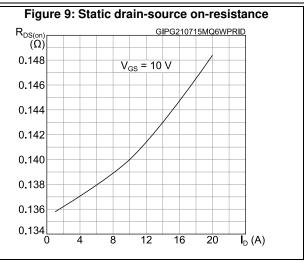
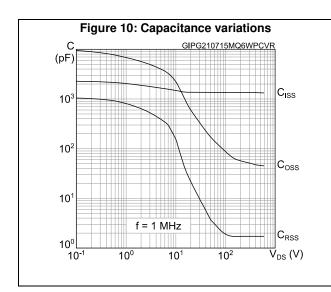
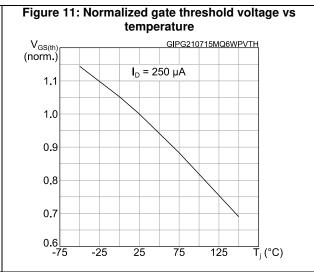


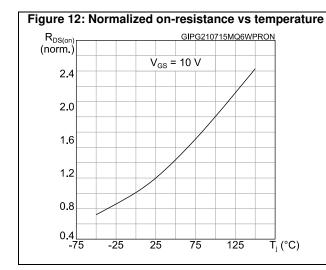
Figure 6: Output characteristics

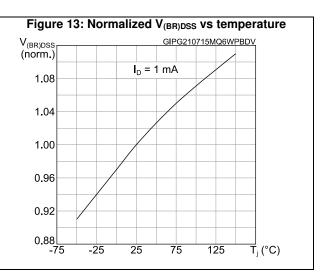




Figure 7: Transfer characteristics




47/


6/16

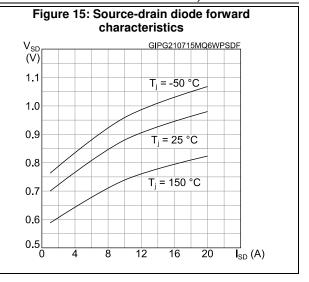

Figure 8: Gate charge vs gate-source voltage GIPG210715MQ6WPQVG V_{DS} $V_{DD} = 480 \text{ V}, I_{D} = 20 \text{ A}$ V_{DS} \overline{Q}_g (nC)

2

Figure 14: Output capacitance stored energy

Eoss GIPG210715MQ6WPEOS

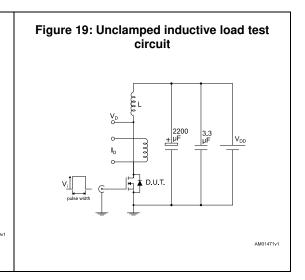
(µJ)

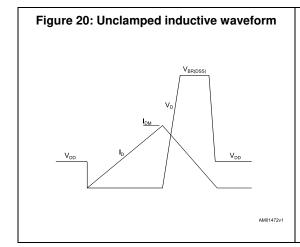

10

8

6

100 200 300 400 500 600


 $V_{DS}(V)$



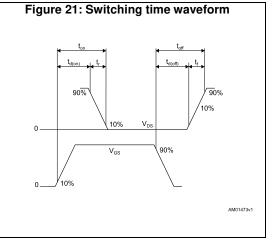

3 Test circuits

Figure 16: Test circuit for resistive load switching times

Figure 18: Test circuit for inductive load

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 22: TO-220 type A package outline

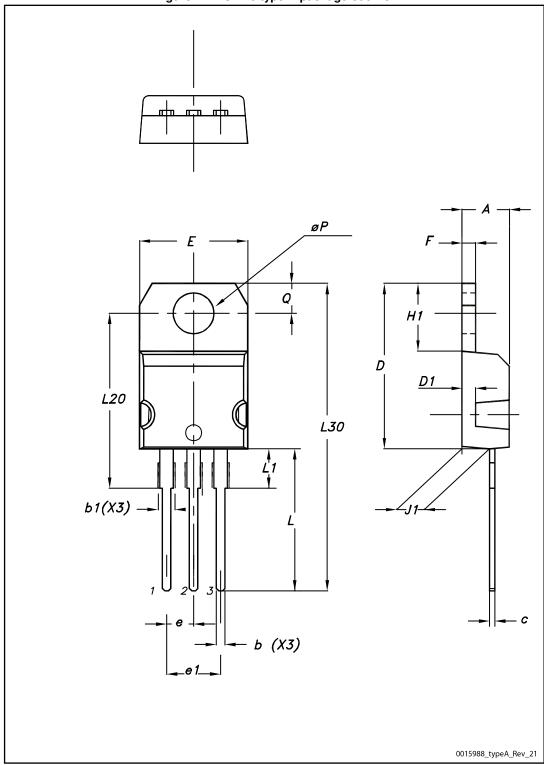


Table 9: TO-220 type A mechanical data

Table of the Late type of model and a					
Dim.		mm			
Dilli.	Min.	Тур.	Max.		
Α	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.55		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10.00		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13.00		14.00		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
øΡ	3.75		3.85		
Q	2.65		2.95		

4.2 TO-247 package information

Figure 23: TO-247 package outline

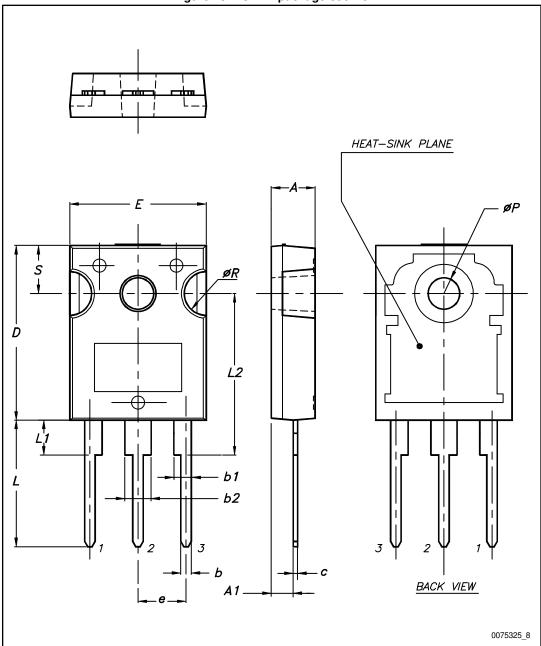


Table 10: TO-247 package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
03-Aug-2015	1	First release.
08-Mar-2017	2	Updated <i>Table 2: "Absolute maximum ratings"</i> , <i>Table 3: "Thermal data"</i> and <i>Figure 10: "Capacitance variations"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

