

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STP52N25M5

N-channel 250 V, 0.055 Ω 28 A, TO-220 MDmeshTM V Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STP52N25M5	250 V	< 0.065 Ω	28 A

- Amongst the best R_{DS(on)}* area
- High dv/dt capability
- Excellent switching performance
- Easy to drive
- 100% avalanche tested

Application

■ Switching applications

Description

This devices is an N-channel MDmesh™ V Power MOSFET based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH™ horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

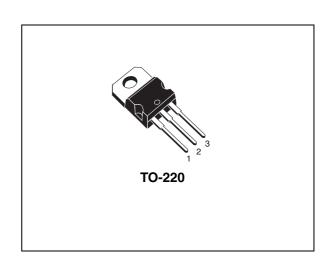


Figure 1. Internal schematic diagram

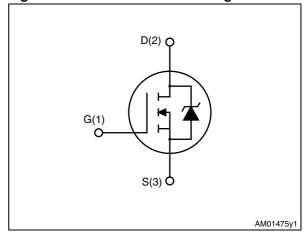


Table 1. Device summary

Order code	Marking	Package	Packaging
STP52N25M5	52N25M5	TO-220	Tube

Contents STP52N25M5

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history1	11

STP52N25M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate- source voltage	25	V
I _D	Drain current (continuous) at T _C = 25 °C	28	Α
I _D	Drain current (continuous) at T _C = 100 °C	18	Α
I _{DM} ⁽¹⁾	Drain current (pulsed) 112		Α
P _{TOT}	Total dissipation at T _C = 25 °C 110		W
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _J max)		Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)		mJ
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.14	°C/W
R _{thj-amb}	Thermal resistance junction-pcb max	62.5	°C/W
TJ	Maximum lead temperature for soldering purpose	300	°C/W

^{2.} $I_{SD} \leq 28 \text{ A, di/dt} \leq 400 \text{ A/µs, } V_{Peak} < V_{(BR)DSS}$.

Electrical characteristics STP52N25M5

2 Electrical characteristics

(Tcase =25°C unless otherwise specified).

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	250			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125 °C			1 100	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 14 \text{ A}$		0.055	0.065	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	1770 110 17	-	pF pF pF
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related	$V_{GS} = 0, V_{DS} = 0 \text{ to } 80\%$ $V_{(BR)DSS}$	-	93	-	pF
C _{o(tr)} ⁽²⁾	Equivalent output capacitance time related	$V_{GS} = 0, V_{DS} = 0 \text{ to } 80\%$ $V_{(BR)DSS}$	-	178	-	pF
Rg	Gate input resistance	f=1 MHz open drain	-	2	-	Ω
Qg	Total gate charge	V _{DD} = 200 V, I _D = 28 A,		47		nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	10	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14)		24		nC

^{1.} $C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

^{2.} $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
$t_{\text{d(V)}}$ $t_{\text{r(V)}}$ $t_{\text{f(i)}}$ $t_{\text{c(off)}}$	Voltage delay time Voltage rise time Current fall time Crossing time	$V_{DD} = 125 \text{ V}, I_{D} = 14 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 13)	-	40 18 64 82	-	ns ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current		-		28	A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				112	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 28 \text{ A}, V_{GS} = 0$	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 28 A, di/dt = 100 A/μs		168		ns
Q_{rr}	Reverse recovery charge	V_{DD} = 60 V, T_J = 25 °C	-	1.2		μC
I _{RRM}	Reverse recovery current	(see Figure 15)		14.5		Α
t _{rr}	Reverse recovery time	$I_{SD} = 28 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		196		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V T _J = 150 °C	-	1.7		μC
I _{RRM}	Reverse recovery current	(see Figure 15)		17		Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STP52N25M5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

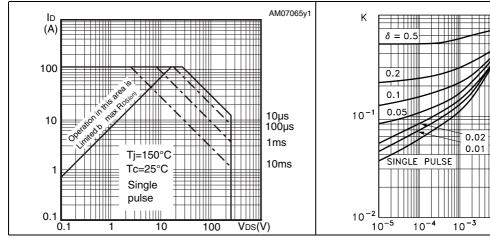


Figure 4. Output characteristics

Figure 5. Transfer characteristics

 $Z_{th} = k R_{thJ-c}$

 $\delta = t_p / \tau$

 10^{-2}

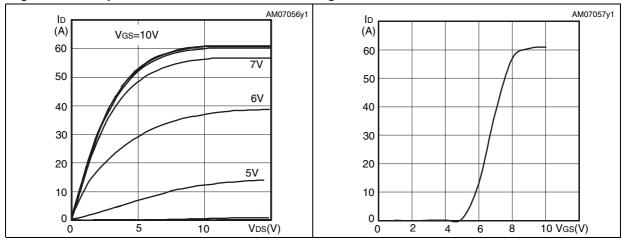


Figure 6. Gate charge vs gate-source voltage Figure 7. Static drain-source on resistance

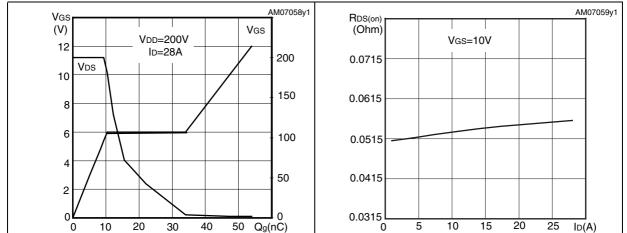


Figure 8. **Capacitance variations**

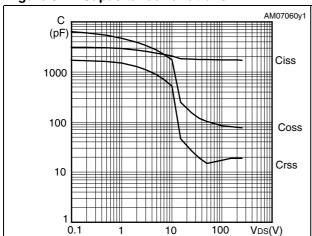


Figure 9. Output capacitance stored energy

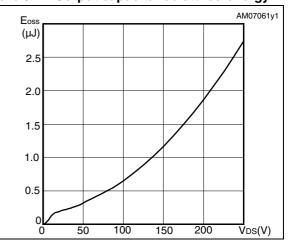
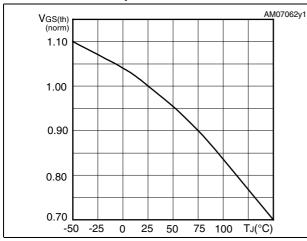



Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature

temperature

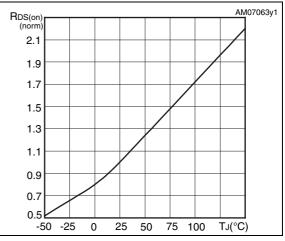
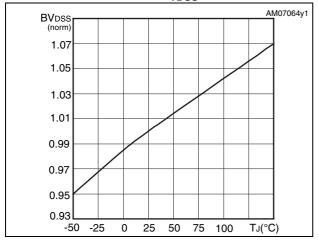



Figure 12. Normalized B_{VDSS} vs temperature

Test circuits STP52N25M5

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

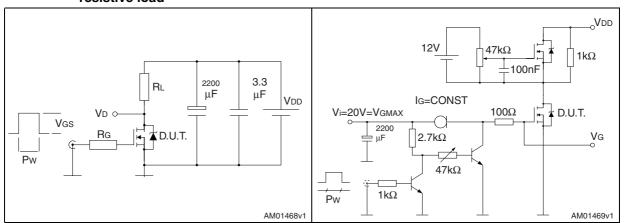


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

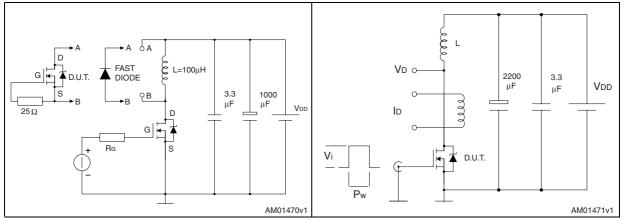
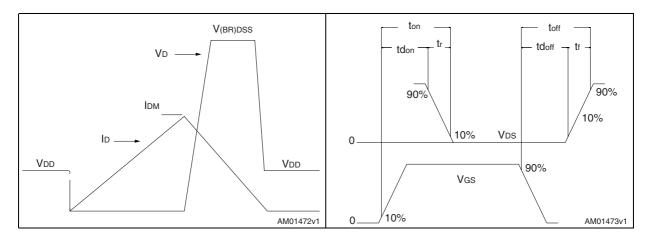
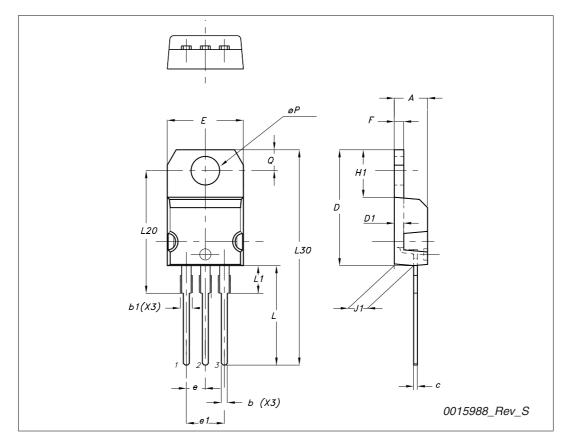



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

TO-220	type A	mechanical	data
--------	--------	------------	------

Disc.		mm			
Dim	Min	Тур	Max		
A	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

STP52N25M5 Revision history

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
29-Jul-2010	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 17776 Rev 1