

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

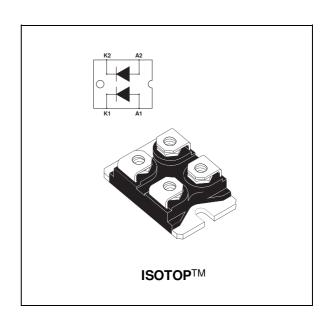
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STPS16045TV

POWER SCHOTTKY RECTIFIER

MAIN PRODUCT CHARACTERISTICS

IF(AV)	2 x 80 A
V _{RRM}	45 V
Tj (max)	150 ℃
V _F (max)	0.69 V


FEATURES AND BENEFITS

- VERY SMALL CONDUCTION LOSSES
- NEGLIGIBLE SWITCHING LOSSES
- EXTREMELY FAST SWITCHING
- LOW THERMAL RESISTANCE
- INSULATED PACKAGE: Insulating voltage = 2500 V_(RMS) Capacitance = 45 pF

Dual power Schottky rectifier suited for Switched Mode Power Supplies and high frequency DC to DC converters.

Packaged in ISOTOP, this device is especially intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications.

ABSOLUTE RATINGS (limiting values, per diode)

Symbol	Parameter	Value	Unit		
V_{RRM}	Repetitive peak reverse voltage			45	V
I _{F(RMS)}	RMS forward current			125	Α
I _{F(AV)}	Average forward current	$Tc = 75^{\circ}C$ $\delta = 0.5$	Per diode Per device	80 160	А
I _{FSM}	Surge non repetitive forward current	tp = 10 ms si	nusoidal	900	Α
I _{RRM}	Repetitive peak reverse current	tp = 2 μs squ F = 1kHz	ıare	2	Α
I _{RSM}	Non repetitive peak reverse current tp = 100 μs square			5	Α
T _{stg}	Storage temperature range			- 55 to + 150	°C
Tj	Maximum operating junction temperature *			150	℃
dV/dt	t Critical rate of rise of reverse voltage			10000	V/µs

^{* :} $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

ISOTOP is a trademark of STMicroelectronics

June 1999 - Ed: 3A 1/4

STPS16045TV

THERMAL RESISTANCES

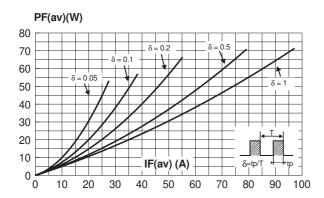
Symbol	Parameter	Value	Unit	
R _{th (j-c)}	Junction to case	Per diode	1	°C/W
		Total	0.55	
R _{th (c)}		Coupling	0.1	

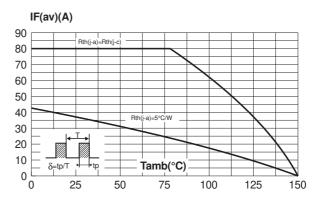
When the diodes 1 and 2 are used simultaneously:

 Δ Tj(diode 1) = P(diode) x R_{th(j-c)} (Per diode) + P(diode 2) x R_{th(c)}

STATIC ELECTRICAL CHARACTERISTICS (per diode)

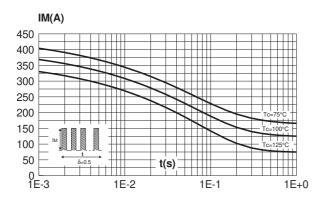
Symbol	Parameter	Tests Conditions		Min.	Тур.	Max.	Unit
I _R *	Reverse leakage current	Tj = 25°C	$V_R = V_{RRM}$			1	mA
		Tj = 125°C			43	150	
V _F *	Forward voltage drop	Tj = 125°C	I _F = 80 A		0.62	0.69	V
		Tj = 25°C	I _F = 160 A			0.95	
		Tj = 125°C	I _F = 160 A		0.8	0.90	

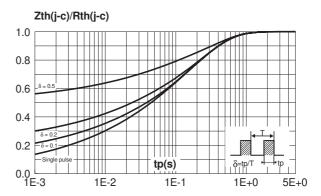

Pulse test : $*tp = 380 \mu s$, $\delta < 2\%$


To evaluate the conduction losses use the following equation :

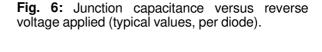
 $P = 0.48 \times I_{F(AV)} + 0.00262 \times I_{F}^{2}(RMS)$

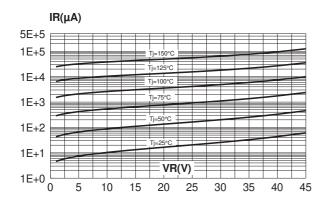
Fig. 1: Average forward power dissipation versus average forward current (per diode).

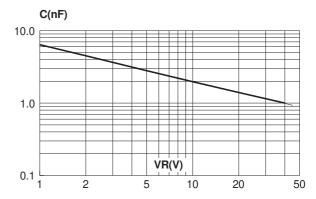

Fig. 2: Average current versus case temperature (δ = 0.5, per diode).

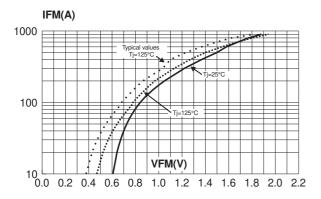


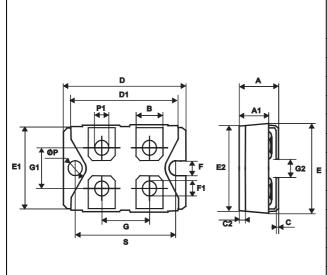
2/4


Fig. 3: Non repetitive surge peak forward current versus overload duration (maximum values, per diode).




Fig. 4: Relative variation of thermal transient impedance junction to case versus pulse duration (per diode).


Fig. 5: Reverse leakage current versus reverse voltage applied (typical values, per diode).


Fig. 7: Forward voltage drop versus forward current (maximum values, per diode).

3/4

PACKAGE MECHANICAL DATA

	DIMENSIONS				
REF.	Millin	neters	Inches		
	Min.	Max.	Min.	Max.	
Α	11.80	12.20	0.465	0.480	
A1	8.90	9.10	0.350	0.358	
В	7.8	8.20	0.307	0.323	
С	0.75	0.85	0.030	0.033	
C2	1.95	2.05	0.077	0.081	
D	37.80	38.20	1.488	1.504	
D1	31.50	31.70	1.240	1.248	
Е	25.15	25.50	0.990	1.004	
E1	23.85	24.15	0.939	0.951	
E2	24.80	O typ.	0.976	S typ.	
G	14.90	15.10	0.587	0.594	
G1	12.60	12.80	0.496	0.504	
G2	3.50	4.30	0.138	0.169	
F	4.10	4.30	0.161	0.169	
F1	4.60	5.00	0.181	0.197	
Р	4.00	4.30	0.157	0.69	
P1	4.00	4.40	0.157	0.173	
S	30.10	30.30	1.185	1.193	

Туре	Marking	Package	Weight	Base qty	Delivery mode
STPS16045TV	STPS16045TV	ISOTOP	28 g. without screws	10	Tube

■ Cooling method: by conduction (C)

■ Recommended torque value: 1.3 N.m.

■ Maximum torque value: 1.5 N.m.

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com