imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

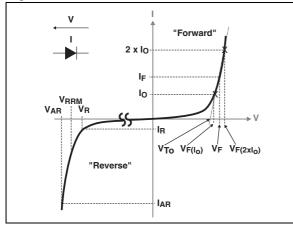
Contact us

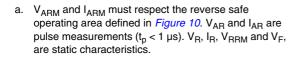
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

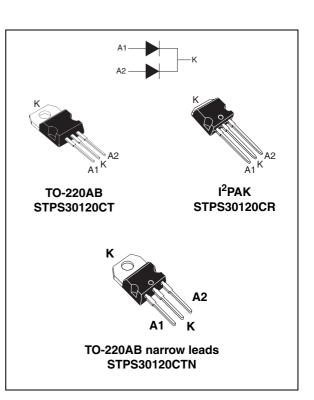
STPS30120C

Power Schottky rectifier

Features


- High junction temperature capability
- Avalanche rated
- Low leakage current
- Good trade-off between leakage current and forward voltage drop


Description


Dual center tap Schottky rectifier suited for high frequency switch mode power supply.

Packaged in TO-220AB, TO-220AB narrow leads, and I²PAK, this device is intended to be used in notebook and LCD adaptors, desktop SMPS, providing in these applications a margin between the remaining voltages applied on the diode and the voltage capability of the diode.

Figure 1. Electrical characteristics (a)

Table 1.Device summary

Symbol	Value
I _{F(AV)}	2 x 15 A
V _{RRM}	120 V
T _{j(max)}	175 °C
V _{F(typ)}	0.57 V

Characteristics 1

Symbol		Value	Unit				
V _{RRM}	Repetitive peak reverse	Repetitive peak reverse voltage					
I _{F(RMS)}	Forward rms current			30	А		
I _{F(AV)}	Average forward current					_	A
I _{FSM}	Surge non repetitive forv	vard current	180	А			
P _{ARM}	Repetitive peak avalanch	ne power	6700	W			
V _{ARM} ⁽¹⁾	Maximum repetitive peak avalanche voltage	t _p = 1 μs, T _j < 1	150	V			
V _{ASM} ⁽¹⁾	Maximum single pulse peak avalanche voltage	t _p = 1 μs, T _j < 1	150	V			
T _{stg}	Storage temperature ran	-65 to + 175	°C				
Тj	Maximum operating junc	175	°C				

Table 2. Absolute ratings (limiting values, per diode)

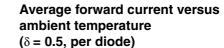
1. Refer to *Figure 10* 2. $\frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

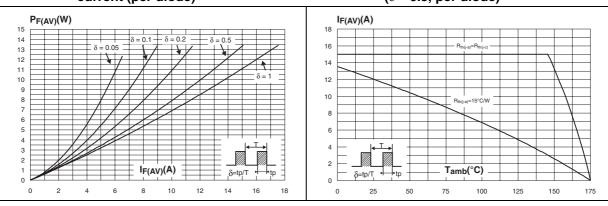
Thermal parameters Table 3.

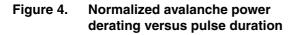
Symbol	Parameter	Value	Unit	
R _{th(j-c)}	Junction to case	Per diode Total	2.2 1.3	°C/W
R _{th(c)}	Coupling	Total	0.3	°C/W

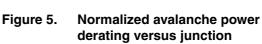
When the diodes 1 and 2 are used simultaneously : $T_j(diode \ 1)$ = P(diode 1) x $R_{th(j-c)}(per \ diode)$ + P(diode 2) x $R_{th(c)}$

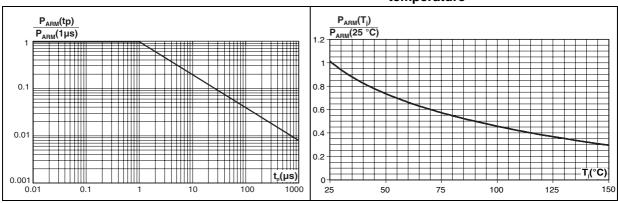

Symbol	Test conditions			Min.	Тур.	Max.	Unit
I _B ⁽¹⁾	Povorco logkago ourropt	T _j = 25 °C	V _V			15	μA
'R` ′	IR ⁽¹⁾ Reverse leakage current	T _j = 125 °C	$V_{R} = V_{RRM}$		2.5	7.5	mA
	$V_{F}^{(2)} Forward voltage drop Forward voltage drop Forward volta$	1 - 5 4			0.74		
		T _j = 125 °C	$i_F = 5 A$		0.57	0.61	
v (2)		T _j = 25 °C				0.92	V
VF` /		T _j = 125 °C	1 _F = 15 A		0.7	0.74	V
		T _j = 25 °C	L _ 20 A			1.02	
		T _j = 125 °C	F = 30 A		0.83	0.89	

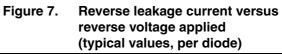

Table 4.	Static electrical	characteristics	(per diode)
		characteristics	(per aloac)

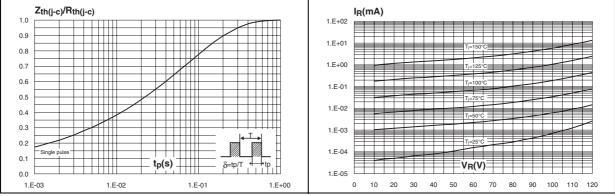

1. Pulse test : tp = 5 ms, δ < 2%


2. Pulse test : tp = 380 μ s, δ < 2%


To evaluate the maximum conduction losses use the following equation : $P = 0.59 \text{ x } I_{F(AV)} + 0.01 I_{F}^{2}(RMS)$




derating versus junction temperature



Doc ID 11213 Rev 4

Figure 6. Relative variation of thermal impedance junction to ambient versus pulse duration

Figure 8. Junction capacitance versus reverse voltage applied (typical values, per diode)

Figure 9. Forward voltage drop versus forward current (per diode)

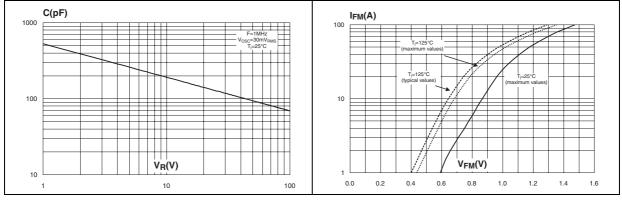
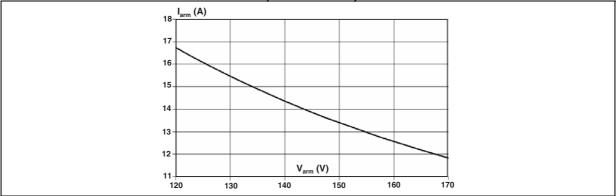



Figure 10. Reverse safe operating area (t_p < 1 μ s and T_i < 150 °C)

57

2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. TO-220AB dimensions

				Dime	nsions	
	Ref	. 1	Millimeters		Inches	
		М	in.	Max.	Min.	Max.
	А	4.	40	4.60	0.173	0.181
H2 A Dia C	С	1.	23	1.32	0.048	0.051
	→. D	2.	40	2.72	0.094	0.107
	E	0.	49	0.70	0.019	0.027
	L7 F	0.	61	0.88	0.024	0.034
	F 1	1.	14	1.70	0.044	0.066
	F2	1.	14	1.70	0.044	0.066
	G	4.	95	5.15	0.194	0.202
$ \downarrow \underbrace{F1}_{F1} \underbrace{F1} \underbrace{F1}_{F1} \underbrace{F1}_{F1} \underbrace{F1} \underbrace{F1}$	G1	2.	40	2.70	0.094	0.106
L4	H2	1	0	10.40	0.393	0.409
F→←	L2		16.4 typ.		0.645 typ.	
	E L4	1	3	14	0.511	0.551
	L5	2.	65	2.95	0.104	0.116
G	L6	15	.25	15.75	0.600	0.620
	L7	6.	20	6.60	0.244	0.259
	L9	3.	50	3.93	0.137	0.154
	М		2.6	typ.	0.10	2 typ.
	Dian	n. 3.	75	3.85	0.147	0.151

5/9

		Dimensions					
	Ref.	Ref. Millimeters		rs	Inches		
		Min.	Тур.	Max.	Min.	Тур.	Max.
	А	4.40		4.60	0.17		0.18
	b	0.61		0.88	0.024		0.034
øp	b1	0.95		1.20	0.037		0.047
	с	0.48		0.70	0.019		0.027
	D	15.25		15.75	0.60		0.62
	D1		1.27			0.05	
	Е	10.00		10.40	0.39		0.41
	е	2.40		2.70	0.094		0.106
t 1	e1	4.95		5.15	0.19		0.20
	F	1.23		1.32	0.048		0.052
	H1	6.20		6.60	0.24		0.26
	J1	2.40		2.72	0.095		0.107
-e1	L	13.00		14.00	0.51		0.55
	L1	2.60		2.90	0.102		0.114
	L20		15.40			0.61	
	L30		28.90			1.14	
	ØP	3.75		3.85	0.147		0.151
	Q	2.65		2.95	0.104		0.116

 Table 6.
 TO-220AB narrow leads dimensions

Devices in I²PAK with nickel-plated back frame must NOT be mounted by frame soldering like SMDs. Such devices are intended to be through-hole mounted ONLY and in no circumstances shall ST be held liable for any lack of performance or damage arising out of soldering of nickel-plated back frames.

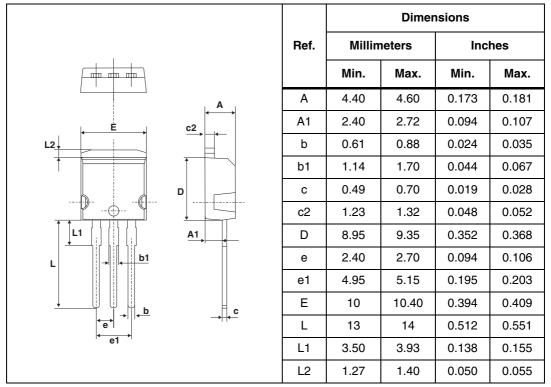


Table 7. I²PAK dimensions

3 Ordering information

Table 8.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS30120CT	STPS30120CT	TO-220AB	2.23 g	50	Tube
STPS30120CR	STPS30120CR	I ² PAK	1.49 g	50	Tube
STPS30120CTN	STPS30120CTN	TO-220AB narrow leads	1.9 g	50	Tube

4 Revision history

Table 9.Document revision history

Date	Revision	Changes
18-Feb-2005	1	First issue.
23-Nov-2006	2	Reformatted to current standards. Added I ² PAK package.
17-Feb-2010	3	Updated Table 2. Added Figure 1 and Figure 10.
13-Jan-2012	4	Added TO-220AB narrow leads package.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 11213 Rev 4