imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STPS30L30C

Low drop power Schottky rectifier

Features

- Very small conduction losses
- Negligible switching losses
- Extremely fast switching
- Low forward voltage drop
- Low thermal resistance
- Avalanche capability specified

Description

This dual center tap Schottky rectifier is suited for switch mode power supplies and high frequency DC to DC converters.

Packaged in TO-220AB, D²PAK and I²PAK, this device is intended for use in low voltage, high frequency inverters, free-wheeling and polarity protection applications.

I _{F(AV)}	2 x 15 A
V _{RRM}	30 V
T _j (max)	150 °C
V _F (typ)	0.37 V

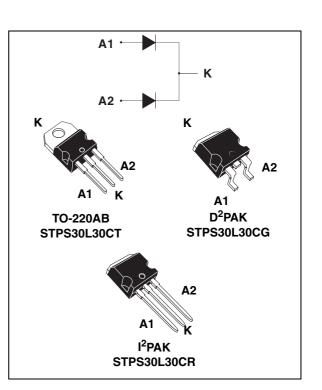
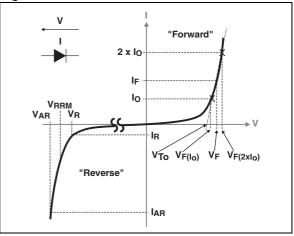



Figure 1. Electrical characteristics ^(a)

a. V_{ARM} and I_{ARM} must respect the reverse safe operating area defined in *Figure 12* V_{AR} and I_{AR} are pulse measurements ($t_p < 1 \ \mu$ s). V_R , I_R , V_{RRM} and V_F , are static characteristics

1 Characteristics

Table 2.	Absolute ratings	(limiting	values	per diode)

Symbol	Parameter			Value	Unit
V _{RRM}	Repetitive peak reverse voltage			30	V
I _{F(RMS)}	Forward rms current			30	Α
I _{F(AV)}	Average forward current $\delta = 0.5$	$T_c = 140 \ ^{\circ}C,$ Per diode Per device		15 30	А
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sinusoida	I,	220	Α
I _{RRM}	Peak repetitive reverse current	t _p = 2 μs square, F= 1 kHz square		1	Α
I _{RSM}	Non repetitive peak reverse current	t _p = 100 μs square		3	Α
P _{ARM} ⁽¹⁾	Repetitive peak avalanche power	$t_p = 1 \ \mu s$ $T_j = 25 \ ^\circ C$		5300	W
V _{ARM} ⁽²⁾	Maximum repetitive peak avalanche voltage	t _p < 1 μs T _j < 150 °C I _{AR} < 35 A		45	V
V _{ASM} ⁽²⁾	Maximum single pulse peak avalanche voltage			45	V
T _{stg}	Storage temperature range	-65 to + 175	°C		
Tj	Maximum operating junction temperature ⁽³⁾			150	°C
dV/dt	Critical rate of rise of reverse voltage	10000	V/µs		

1. For temperature or pulse time duration deratings, refer to *Figure 4*. and *Figure 5*.. More details regarding the avalanche energy measurements and diode validation in the avalanche are provided in the application notes AN1768 and AN2025.

2. Refer to Figure 12

3. $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

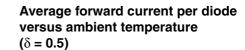
Table 3.Thermal resistance⁽¹⁾

Symbol	Parameter	Value	Unit	
R _{th(j-c)}	Junction to case Per diode Total		1.5 0.8	°C/W
R _{th(c)}	Coupling		0.1	

1. When the diodes 1 and 2 are used simultaneously: ΔT_j (diode 1) = P(diode1) x R_{th(j-c)}(Per diode) + P(diode 2) x R_{th(c)})

Table 4. Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _B ⁽¹⁾	Reverse leakage current	T _j = 25 °C	VV			1.5	mA
IR' / Neverse leakage current	T _j = 125 °C	$V_{R} = V_{RRM}$		170	350	mA	
	Forward voltage drop $\begin{array}{c} T_{j} = 25 \ ^{\circ}\text{C} \\ T_{j} = 125 \ ^{\circ}\text{C} \\ \hline T_{j} = 25 \ ^{\circ}\text{C} \\ \hline T_{j} = 25 \ ^{\circ}\text{C} \\ \hline T_{j} = 125 \ ^{\circ}\text{C} \\ \hline T_{j} = 125 \ ^{\circ}\text{C} \\ \hline \end{array}$			0.46			
v (1)		IF = 10 A		0.33	0.37	v	
VF.		$T_j = 25 \ ^{\circ}C$			0.57	v	
		T _j = 125 °C	$I_F = 30A$		0.43	0.5	


1. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses use the following equation:

 $P = 0.24 \text{ x } I_{F(AV)} + 0.009 \text{ x } I_{F}^{2}(RMS)$

Figure 2. Average forward power dissipation Figure 3. versus average forward current (per diode)

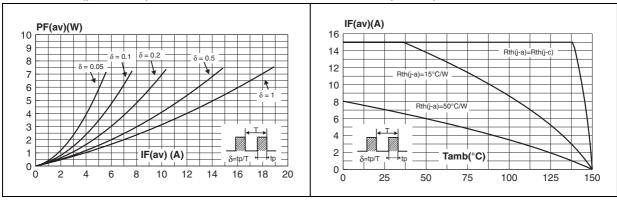


Figure 4. Normalized avalanche power derating versus pulse duration

Figure 5. Normalized avalanche power derating versus junction temperature

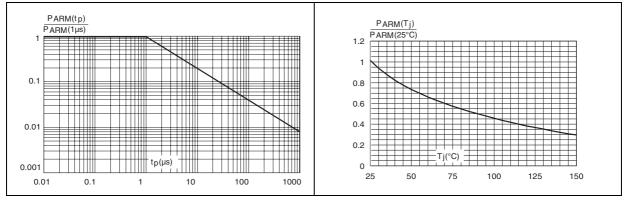
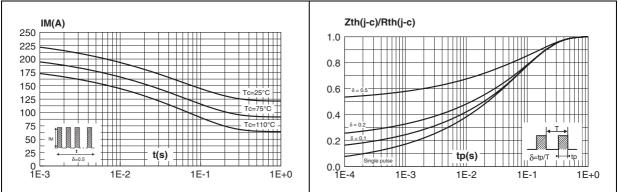
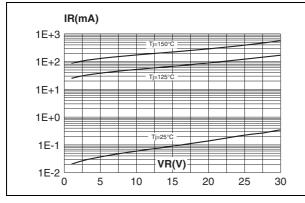
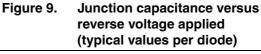




Figure 6. Non repetitive surge peak forward current versus overload duration, (maximum values per diode)


Figure 7. Relative variation of thermal impedance junction to case versus pulse duration

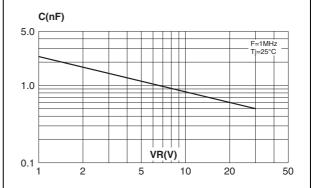


Figure 8. Reverse leakage current versus reverse voltage applied (typical values per diode)

Figure 10. Forward voltage drop versus forward current (maximum values per diode)

Figure 11. Thermal resistance junction to ambient versus copper surface under tab

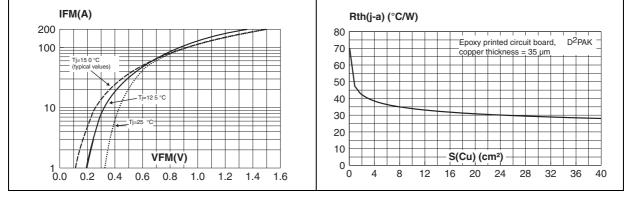
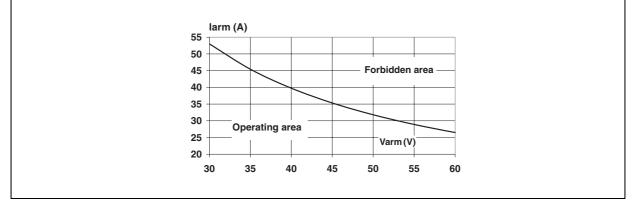



Figure 12. Reverse safe operating area (t_p < 1 μ s and T_j < 150 °C)

2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. TO-220AB dimensions

			Dimer	nsions	
	Ref.	Millin	neters	Inches	
		Min.	Max.	Min.	Max.
	А	4.40	4.60	0.173	0.181
	С	1.23	1.32	0.048	0.051
H2 A Dia C	D	2.40	2.72	0.094	0.107
	E	0.49	0.70	0.019	0.027
	L7 F	0.61	0.88	0.024	0.034
	F1	1.14	1.70	0.044	0.066
	F2	1.14	1.70	0.044	0.066
F2	G	4.95	5.15	0.194	0.202
	G1	2.40	2.70	0.094	0.106
	H2	10	10.40	0.393	0.409
F→ ←	L2	16.4	typ.	0.64	5 typ.
	L4	13	14	0.511	0.551
	L5	2.65	2.95	0.104	0.116
G G	L6	15.25	15.75	0.600	0.620
	L7	6.20	6.60	0.244	0.259
	L9	3.50	3.93	0.137	0.154
	М	2.6	typ.	0.10	2 typ.
	Diam.	3.75	3.85	0.147	0.151

57

Mounting (soldering) the I²PAK metal slug (heatsink) with alloy, like a surface mount device, IS NOT PERMITTED. A standard through-hole mounting is mandatory.

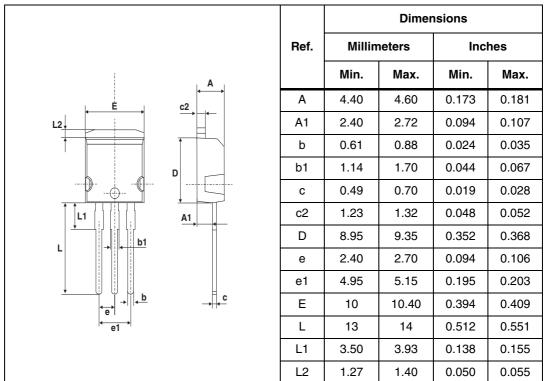



Table 6.I²PAK dimensions

				Dimer	nsions	
		Ref.	Millin	Millimeters		hes
·			Min.	Max.	Min.	Max.
		Α	4.40	4.60	0.173	0.181
		A1	2.49	2.69	0.098	0.106
	C2→→←	A2	0.03	0.23	0.001	0.009
		В	0.70	0.93	0.027	0.037
L		B2	1.14	1.70	0.045	0.067
		С	0.45	0.60	0.017	0.024
↓ ↓ ↓ ↓ ↓ ↓	A1	C2	1.23	1.36	0.048	0.054
		D	8.95	9.35	0.352	0.368
G		E	10.00	10.40	0.393	0.409
		G	4.88	5.28	0.192	0.208
		L	15.00	15.85	0.590	0.624
	M↓ ★↓ V2	L2	1.27	1.40	0.050	0.055
	* FLAT ZONE NO LESS THAN 2mm	L3	1.40	1.75	0.055	0.069
		М	2.40	3.20	0.094	0.126
		R	0.40	typ.	0.016	6 typ.
		V2	0°	8°	0°	8°

Table 7.D²PAK dimensions

Figure 13. D²PAK footprint (dimensions in mm)

3 Ordering information

Table 8.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS30L30CT	STPS30L30CT	TO-220AB	2.0 g	50	Tube
STPS30L30CG	STPS30L30CR	D ² PAK	1.8 g	50	Tube
STPS30L30CG-TR	STPS30L30CG	D ² PAK	1.8 g	1000	Tape and reel
STPS30L30CG-TR	STPS30L30CG	I ² PAK	1.49 g	50	Tube

4 Revision history

Table 9.Document revision history

Date	Revision	Changes
Jul-2003	5C	Previous issue
29-Apr-2010	6	Added Figure 1 and Figure 12. Added parameters V_{ARM} and V_{ASM} to Table 2

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 5506 Rev 6