

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STPS61170C

High voltage power Schottky rectifier

Features

- High junction temperature capability
- Low leakage current
- Good trade off between leakage current and forward voltage drop
- Low thermal resistance
- High frequency operation
- Avalanche specification

Description

Dual center tab Schottky rectifier suited for high frequency switched mode power supply.

Packaged in TO-247, this device is intended for use to enhance the reliability of the application.

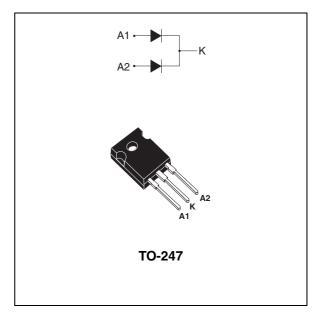


Table 1. Device summary

Symbol	Value		
I _{F(AV)}	2 x 30 A		
V _{RRM}	170 V		
T _j	175 °C		
V _{F (max)}	0.67 V		

Characteristics STPS61170C

1 Characteristics

Table 2. Absolute ratings (limiting values, per diode)

Symbol	Parameter			Value	Unit	
V _{RRM}	Repetitive peak reverse voltage			170	V	
I _{F(RMS)}	Forward rms current			80	Α	
	Average forward ourrent	orward current $T_{C} = 150 ^{\circ}\text{C} \delta = 0.5$ Per diode Per device		30	Α	
I _{F(AV)}	Average lorward current			Per device	60	
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$				500	Α
P _{ARM}	Repetitive peak avalanche power $t_p = 1 \mu s T_j = 25 ^{\circ}C$				31800	W
V _{ARM} ⁽¹⁾	Maximum repetitive peak avalanche voltage $t_p = 1 \mu s, T_j < 150 ^{\circ}C,$			200	V	
V _{ASM} ⁽¹⁾	Maximum single pulse peak avalanche voltage			200	V	
T _{stg}	Storage temperature range			-65 to + 175	°C	
Tj	Maximum operating junction temperature ⁽²⁾			175	°C	
dV/dt	Critical rate of rise reverse voltage			10000	V/µs	

^{1.} Refer to Figure 11

Table 3. Thermal resistance parameters

Symbol	Parameter	Value	Unit	
R _{th (j-c)}	Junction to case Per dioc Total	de	0.9 0.6	°C/W
R _{th (c)}	Coupling		0.3	

When the diodes 1 and 2 are used simultaneously:

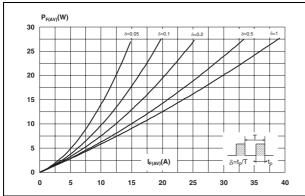
 ΔT_j (diode 1) = P(diode1) x $R_{th(j-c)}$ (Per diode) + P(diode 2) x $R_{th(c)}$

Table 4. Static electrical characteristics (per diode)

Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾ Reverse leakage current	T _j = 25 °C	$V_R = V_{RRM}$			60	μΑ	
	T _j = 125 °C			16	60	mA	
V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 30 A			0.84		
	T _j = 125 °C			0.63	0.67	V	
	T _j = 25 °C	I _F = 60 A			0.92	V	
		T _j = 125 °C	IF = 00 A		0.76	0.80	

^{1.} Pulse test: $t_p = 5 \text{ ms}, \delta < 2\%$

To evaluate the conduction losses use the following equation :

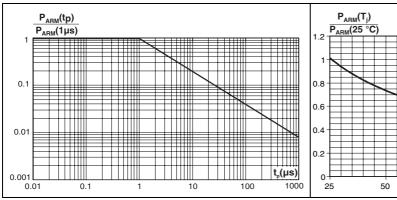

$$P = 0.54 \times I_{F(AV)} + 0.0043 I_{F^{2}(RMS)}$$

^{2.} $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

^{2.} Pulse test: t_p = 380 μ s, δ < 2%

STPS61170C Characteristics

Figure 1. Average forward power dissipation Figure 2. Average forward curvent wersus average forward current (per diode) Average forward current ($\delta = 0.5$, per diode)



Average forward current versus ambient temperature $(\delta = 0.5, \text{ per diode})$

1_{F(AV)}(A)
35
30
1_{F(av)}(a)
15
15
10
15
10
15
10
15
10
125
150
175

Figure 3. Normalized avalanche power derating versus pulse duration

Figure 4. Normalized avalanche power derating versus junction temperature

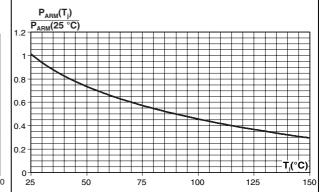
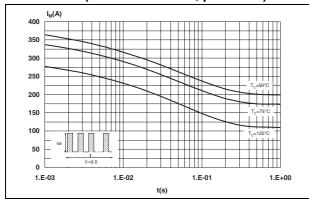
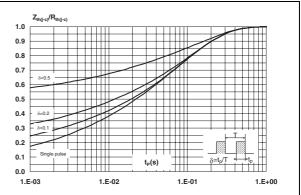
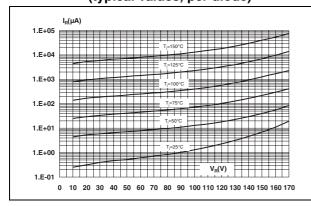




Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values, per diode)

Figure 6. Relative variation of thermal impedance junction to case versus pulse duration (per diode)



Characteristics STPS61170C

Figure 7. Reverse leakage current versus reverse voltage applied (typical values, per diode)

Figure 8. Junction capacitance versus reverse voltage applied (typical values, per diode)

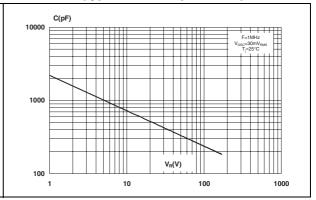
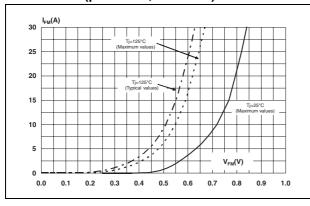



Figure 9. Forward voltage drop versus forward current (per diode, low level)

Figure 10. Forward voltage drop versus forward current (per diode, high level)

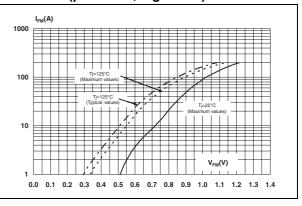
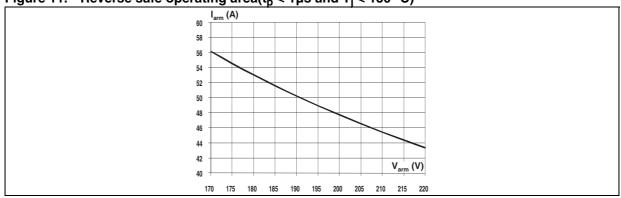
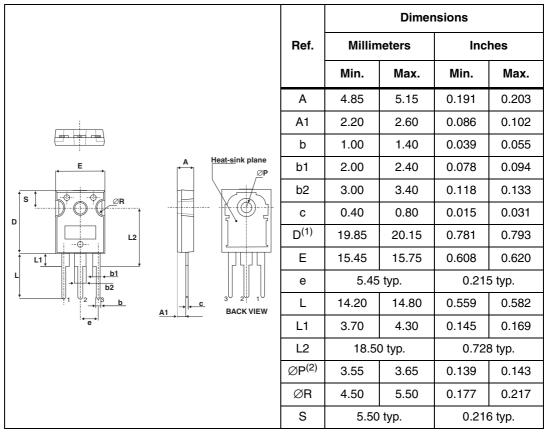



Figure 11. Reverse safe operating area($t_p < 1\mu s$ and $T_i < 150$ °C)



2 Package information

- Epoxy meets UL94,V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.55 to 1.0 N⋅m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 5. TO-247 dimensions

- 1. Dimension D plus gate protrusion does not exceed 20.5 mm
- 2. Resin thickness around the mounting hole is not less than 0.9 mm

Ordering information STPS61170C

3 Ordering information

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS61170CW	STPS61170CW	TO-247	4.40 g	30	Tube

4 Revision history

Table 7. Document revision history

Date	Revision	Changes	
16-Sep-2005	1	First issue.	
01-Dic-2010	2	Updated Table 2 and added Figure 11.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

