

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

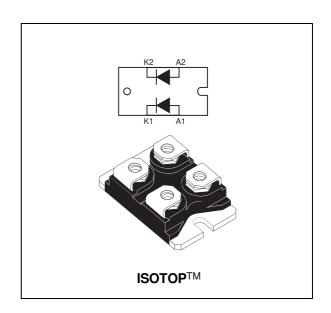
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STPS80H100TV


HIGH VOLTAGE POWER SCHOTTKY RECTIFIER

MAIN PRODUCT CHARACTERISTICS

I _{F(AV)}	2 x 40 A
V _{RRM}	100 V
Tj (max)	150 °C
V _F (max)	0.65 V

FEATURES AND BENEFITS

- NEGLIGIBLE SWITCHING LOSSES
- HIGH JUNCTION TEMPERATURE CAPABILITY
- LOW LEAKAGE CURRENT
- GOOD TRADE OFF BETWEEN LEAKAGE CUR-RENT AND FORWARD VOLTAGE DROP
- AVALANCHE RATED
- LOW INDUCTANCE PACKAGE
- INSULATED PACKAGE: Insulated voltage = 2500 V(RMS) Capacitance = 45 pF

DESCRIPTION

High voltage dual Schottky barrier rectifier designed for high frequency telecom and computer Switched Mode Power Supplies and other power converters.

Packaged in ISOTOP, this device is intended for use in medium voltage operation, and particularly, in high frequency circuitries where low switching losses and low noise are required.

ABSOLUTE RATINGS (limiting values, per diode)

Symbol	Parameter Parameter				Unit
V_{RRM}	Repetitive peak reverse voltage				V
I _{F(RMS)}	RMS forward current				Α
I _{F(AV)}	Average forward current	age forward current $Tc = 120^{\circ}C$ Per diode $\delta = 0.5$ Per device			
I _{FSM}	Surge non repetitive forward current	tp = 10 ms sinusoidal	700	Α	
I _{RRM}	Repetitive peak reverse current	tp = 2 μs square F =	2	Α	
I _{RSM}	Non repetitive peak reverse current tp = 100 \(\mu \) square			5	Α
T _{stg}	Storage temperature range				ô
Tj	Maximum operating junction temperature *			150	°C
dV/dt	Critical rate of rise of reverse voltage			10000	V/μs

^{* :} $\frac{dPtot}{dT_i} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

July 1999 - Ed: 3A

STPS80H100TV

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th (j-c)}	Junction to case	Per leg	1	°C/W
		Total	0.55	
R _{th (c)}		Coupling	0.1	

When the diodes 1 and 2 are used simultaneously:

 $\Delta T_j(diode 1) = P(diode 1) \times R_{th(j-c)}(Per diode) + P(diode 2) \times R_{th(c)}$

STATIC ELECTRICAL CHARACTERISTICS (per diode)

Symbol	Parameter	Tests Conditions		Min.	Тур.	Max.	Unit
I _R *	Reverse leakage current	Tj = 25°C	$V_R = V_{RRM}$			20	μΑ
		Tj = 125°C			7	25	mA
V _F **	Forward voltage drop	Tj = 25°C	I _F = 40 A			0.78	V
		Tj = 125°C	I _F = 40 A		0.61	0.65	
		Tj = 25°C	I _F = 80 A			0.89	
		Tj = 125°C	I _F = 80 A		0.7	0.74	

Pulse test : $tp = 5 \text{ ms}, \delta < 2\%$

** tp = 380 μ s, δ < 2%

To evaluate the maximum conduction losses use the following equation :

 $P = 0.56 \times I_{F(AV)} + 0.0022 \times I_{F}^{2}_{(RMS)}$

Fig. 1: Average forward power dissipation versus average forward current (per diode).

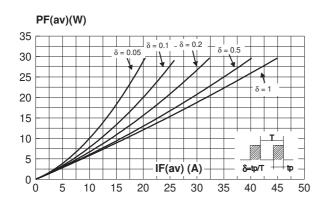
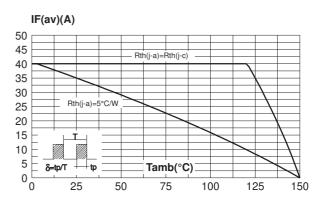
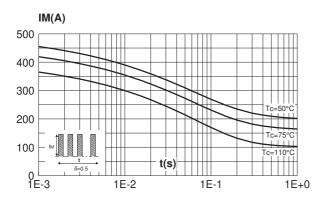
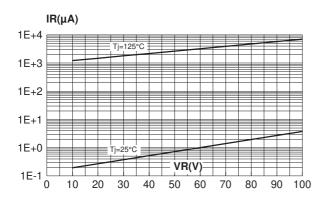




Fig. 2: Average forward current versus ambient temperature (δ =0.5, per diode).



2/4


Fig. 3: Non repetitive surge peak forward current versus overload duration (maximum values, per diode).

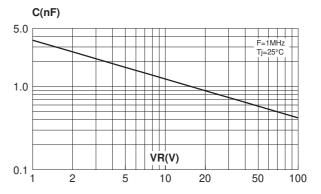
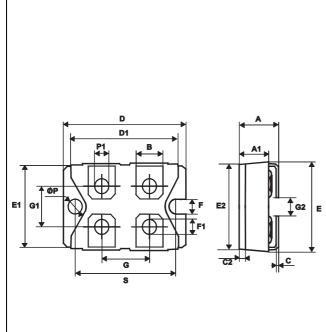

Fig. 4: Relative variation of thermal impedance junction to case versus pulse duration (per diode).

Fig. 5: Reverse leakage current versus reverse voltage applied (typical values, per diode).

Fig. 6: Junction capacitance versus reverse voltage applied (typical values, per diode).


Fig. 7: Forward voltage drop versus forward current (maximum values, per diode).

3/4

STPS80H100TV

$\begin{array}{c} \textbf{PACKAGE MECHANICAL DATA} \\ \textbf{ISOTOP}^{\text{TM}} \end{array}$

	DIMENSIONS				
REF.	Millim	neters	Inc	hes	
	Min.	Max.	Min.	Max.	
Α	11.80	12.20	0.465	0.480	
A1	8.90	9.10	0.350	0.358	
В	7.8	8.20	0.307	0.323	
С	0.75	0.85	0.030	0.033	
C2	1.95	2.05	0.077	0.081	
D	37.80	38.20	1.488	1.504	
D1	31.50	31.70	1.240	1.248	
Е	25.15	25.50	0.990	1.004	
E1	23.85	24.15	0.939	0.951	
E2	24.80	0 typ.	0.976	ityp.	
G	14.90	15.10	0.587	0.594	
G1	12.60	12.80	0.496	0.504	
G2	3.50	4.30	0.138	0.169	
F	4.10	4.30	0.161	0.169	
F1	4.60	5.00	0.181	0.197	
Р	4.00	4.30	0.157	0.69	
P1	4.00	4.40	0.157	0.173	
S	30.10	30.30	1.185 1.193		

Cooling method: C

■ Recommended torque value: 1.3 N.m.

■ Maximum torque value: 1.5 N.m.

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STPS80H100TV	STPS80H100TV	ISOTOP	27g without screws	10	Tube

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com